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SUMMARY
Despite the importance of timing in our daily lives, our understanding of how the human brain mediates sec-
ond-scale time perception is limited. Here, we combined intracranial stereoelectroencephalography (SEEG)
recordings in epileptic patients and circuit dissection in mice to show that visual cortex (VC) encodes timing
information. We first asked human participants to perform an interval-timing task and found VC to be a key
timing brain area. We then conducted optogenetic experiments in mice and showed that VC plays an impor-
tant role in the interval-timing behavior. We further found that VC neurons fired in a time-keeping sequential
manner and exhibited increased excitability in a timed manner. Finally, we used a computational model to
illustrate a self-correcting learning process that generates interval-timed activities with scalar-timing prop-
erty. Our work reveals how localized oscillations in VC occurring in the seconds to deca-seconds range relate
timing information from the external world to guide behavior.
INTRODUCTION

Most human behaviors involve the perception of both space and

time. Human brains organize sensory projections, including

auditory, visual, and place maps, to perceive space in the

external world (Bushara et al., 1999; Ekstrom et al., 2003; Kravitz

et al., 2011). The perception of time on the order of 24 h, namely

circadian timing, ismainly driven by the suprachiasmatic nucleus

of the hypothalamus (Hastings et al., 2018). The perception and

prediction of temporal patterns on the order of seconds to deca-

seconds are prerequisites for the estimation of predators loom-

ing over animals, as well as the performance of sports, dance,

and music for humans (Merchant et al., 2013; Nobre and van

Ede, 2018). However, the representation of timing in the human

brain in the range of seconds to deca-seconds is much less

understood.
Much of what is known about timing-related human brain

structures comes from studies using functional magnetic reso-

nance imaging (fMRI), electroencephalography (EEG), and mag-

netoencephalography (MEG). These studies revealed various

timing-related brain networks during timing tasks on the order

of seconds to deca-seconds. For instance, basal ganglia, thal-

amus, insula, and cingulate-parietal cortical networks are often

associated with interval-timing tasks (Bartolo and Merchant,

2015; Thaut, 2003; Pecenka et al., 2013; Teki et al., 2011). Phase

analysis revealed that theta and alpha band oscillations in visual

and auditory cortices play an important role in timing-learning

tasks (Bueti et al., 2010; Cravo et al., 2013; Henry et al., 2014;

Keitel et al., 2017; Kösem et al., 2018; Mathewson et al., 2009;

Thut et al., 2006). This association was further confirmed by

transcranial stimulation studies with local perturbation of V1 in

humans (Helfrich et al., 2014; Salvioni et al., 2013). These studies
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Figure 1. Elevation of alpha band oscillation power and phase synchrony in visual cortex during a synchronization-and-continuation timing

prediction task

(A) Schematics of the synchronization-and-continuation experiment. In the timing task, the participants were instructed to tap the keyboard in both the training

and the prediction windows, indicating the behavior of timing prediction. In the visual task, the participants were instructed to passively look at the screen.

(B) Upper: tapping latency of each participant relative to the expected onset time of periodic visual stimuli in the prediction window. Lower: raster plots of the

same data in the upper panel.

(legend continued on next page)
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presented important evidence for the identification of timing-

related brain areas. However, fMRI studies rely on indirect mea-

surement of neural activities with limited temporal resolution.

Although non-invasive EEG signals have millisecond temporal

resolution, the signal quality deteriorates when penetrating

through the scalp and the skull.

To address the question of which brain areas play a critical role

in timing perception on the order of seconds to deca-seconds for

humans, we took advantage of stereoelectroencephalography

(SEEG) recordings (Kirkby et al., 2018) that were performed in

eleven patients with epilepsy for seizure localization. SEEG

allows intracranial measurement of electrical activities at milli-

second temporal resolution in awake humans who are perform-

ing interval-timing tasks. The recordings were made over 1 week

as participants performed interval-timing tasks daily. By con-

ducting power and phase analysis in the 28 recorded brain

areas, we proposed visual cortex (VC) to be a critical brain

area for the interval-timing behavior.

To further tackle the problem of the cellular and circuit mecha-

nism that mediates such timing behavior, we took advantage of

circuit dissection tools in mice. Similar to humans, mice can

also recognize and learn temporal sequences with visual stimuli

(Gavornik and Bear, 2014; Xu et al., 2012, 2014; Yao et al.,

2007), or visually cued reward timing (Chubykin et al., 2013; Gav-

ornik et al., 2009; Liu et al., 2015; Makino and Komiyama, 2015;

Namboodiri et al., 2015; Shuler, 2016; Shuler and Bear, 2006;

Zold and Shuler, 2015). Similar to the timing prediction paradigm

in humans, we conducted a synchronization-and-continuation

behavioral experiment in mice. To explore the representation of

timing information in the primary VC (V1), we conducted in vivo

cell-attached recordings and population recordings in V1,

revealing the plastic changes and time-keeping properties in V1

neurons. Computational modeling further illustrates the mecha-

nism in V1 circuits that represents timing information. Our study

reveals that the primary VC acts as a localized center to represent

visually cued timing information through intrinsic circuit dynamics.

RESULTS

Increased alpha band power in visual cortex precedes
the timing prediction behavior in humans
We recorded 11 presurgical patients diagnosed with epilepsy

using SEEG to investigate the brain activity patterns during a
(C) Electrode locations in a three-dimensional brain across 11 participants in ho

channels of electrodes located in visual cortex. Gray dots: the other channels of

(D) Example raw trace of SEEG signals in visual cortex.

(E) Left column: the heatmap of average power in visual cortex in the trainingwindo

rectangle indicates the gamma band frequency within 2 s after the onset of tap

during the timing (top) or visual (bottom) task in the prediction window across 5 pa

and alpha band frequency analyzed in (F) and (G). Time 0 represents the tapping

periodic visual stimuli in the visual task.

(F) Power change index of alpha oscillations in the prediction window of the timi

(G) Percentage of channels with significant power increase or decrease of alpha

(H) Spectrotemporal heatmaps of averaged inter-trial phase clustering (ITPC) of e

Left subplot of the timing or visual task: average ITPC in the prediction window

compared with the null distribution (see STARMethods) were filled with red, other

Error bars represent SEM over taps in (B), and represent SEM over 5 participant

See also Figures S1–S9, Tables S1 and S2, and Video S1.
synchronization-and-continuation task that consists of a

visually cued interval-prediction (‘‘timing’’) task and a control

task (‘‘visual’’) (Figure 1A; see STAR Methods). The ‘‘timing’’

task consisted of 20 periodic drifting gratings (1-s stimulation

with 5-s period, defined as the training window). Patients were

instructed to tap the keyboard right before the onset of each

drifting grating. After 20 stimulations, the patients tapped the

keyboard one more time, anticipating an additional drifting

grating that would not be presented (defined as the prediction

window). In the ‘‘visual’’ task, the patients were instructed to

passively look at 20 periodic drifting gratings without taking

any action. Each session consisted of one ‘‘timing’’ task and

one ‘‘visual’’ task. Each patient participated in seven sessions

over 2–7 days. Among the eleven patients, three did not tap

the keyboard in the prediction window in the ‘‘timing’’ task; the

others tapped the keyboard around the anticipated time of drift-

ing grating onset (Figure 1B; Video S1) with a standard deviation

of 0.3 s. We tracked the eye movement during the timing predic-

tion tasks and did not find an anticipatory eye movement toward

the keyboard, excluding the possibility of preparatory activity in

the motor system modulating VC (Figure S1).

We recorded intracranial local field potentials (LFPs) from the

implanted electrodes in both ‘‘timing’’ and ‘‘visual’’ tasks. Based

on MRI scans and anatomical atlas, the recording sites were

located in 28 brain regions, namely culmen, putamen, claustrum,

caudate, pulvinar, insula, retrosplenial cortex, cingulate gyrus,

amygdala, hippocampus, perirhinal cortex, entorhinal cortex,

inferior temporal gyrus, superior temporal gyrus, middle tempo-

ral gyrus, fusiform gyrus, precentral gyrus, superior frontal gyrus,

middle frontal gyrus, inferior frontal gyrus, medial frontal gyrus,

postcentral gyrus, inferior parietal lobule, superior parietal

lobule, precuneus, and VC (primary VC, secondary VC and asso-

ciative VC) (Figures 1C and 1D; Table S1). The power of delta

(1–3 Hz), theta (3–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), low

gamma (30–80 Hz), and high gamma (80–150 Hz) band oscilla-

tions from all recorded brain regions were calculated (see

STAR Methods). In order to confirm the population activities in

VC in response to visual stimuli (Buzsáki and Wang, 2012), we

first examined the power of gamma band oscillations during

drifting grating stimulation in the training window in both timing

and visual tasks. Gamma band activities were found to be

increased in VC and other brain regions after the onset of the

stimulus (in visual task) or behavior (in timing task), such as the
rizontal (top) and sagittal (bottom) views. Red area: visual cortex. Red dots:

electrodes.

w during the timing (top) or visual (bottom) task across 5 participants. The black

or visual stimuli. Right column: the heatmap of average power in visual cortex

rticipants. The red dashed rectangle indicates the corresponding range of time

timing prediction behavior in the timing task and the expected onset time of

ng or visual task across 5 participants. p = 0.0018 and t = 7.387. Paired t test.

oscillations in visual cortex in 5 participants.

lectrodes in visual cortex across 4 participants during the prediction window.

. Right subplot of the timing or visual task: areas with significant difference

wise with blue. The white dashed rectangle indicates the delta band frequency.

s in (F).
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Figure 2. Visual stimuli enhanced timing prediction performance in mice

(A) Schematics of the synchronization-and-continuation experiment in head-fixed mice. Timing task: water rewards were delivered with periodic drifting gratings

in the training window followed by a 60-s gray background as the prediction window. Reward-only (R) task: periodic water rewards were delivered without visual

stimuli. V-awake visual only: periodic drifting gratings were presented to awake-behaving mice without water rewards. V-anesthetized visual only: periodic

drifting gratings were presented to anesthetized mice.

(B) Upper: example raster plots of licks of one mouse in the prediction window of timing and reward-only tasks with 5-s interval from day 1 to day 7. Lower:

corresponding example lick times over 1-s time bins in the prediction window on day 7. Vertical dashed lines represent the expected onset of the 5-s stimulus.

(C) Mean lick times for all mice over 1-s time bins in the prediction window on day 7. Vertical dashed lines represent the expected onset of the 5- or 10-s stimulus.

Shaded areas represent SEM across mice.

(D) Peak times in (C) in 5-s timing (orange), 5-s reward-only (blue), 10-s timing (magenta), and 10-s reward-only (green) tasks in the prediction window on day 7

with 1-s time bin. Each data point represented onemouse. If amouse licked themost at two different time bins, it was counted twice. The data of both peaks were

included in the graphs. p < 0.001 and t = 5.261 for timing tasks with 5-and 10-s intervals; p = 0.018 and t = 2.489 for reward-only tasks with 5- and 10-s intervals;

p = 0.08 and t = 1.799 for timing tasks and reward-only tasks with 5-s interval; p = 0.796 and t = 0.261 for timing tasks and reward-only tasks with 10-s interval.

(E) Average intervals of lickings acrossmice in the prediction window. Horizontal dashed lines represent the expected onset of 5- or 10-s stimulus. Black asterisks

represent statistical significance between timing and reward-only tasks with 5-s intervals. Gray pound signs represent statistical significance between timing and

reward-only tasks with 10-s intervals. p = 0.0064 and t = 3.38 for 5-s interval. p = 0.012 and t = 3.00 for 10-s interval. Paired t test.

(F) Scalar property (s/m) of predictive licking intervals in the prediction window during 7 training days. Black asterisks represent statistical significance between

timing and reward-only tasks with 5-s intervals. Gray pound signs represent statistical significance between timing and reward-only tasks with 10-s intervals.

p = 0.73 and t = 0.36 for timing task; p = 0.57 and t = 0.59 for R task. Paired t test. The values of s/m of 5-s V-awake, 5-s V-anesthetized, 10-s V-awake, and 10-s

(legend continued on next page)
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precuneus, amygdala, hippocampus, and middle temporal gy-

rus (Figures 1E, see black rectangle and S2). We did not observe

any change in gamma band oscillations in any brain regions

(including VC) prior to the timing prediction behavior (tapping)

in the prediction window in both timing and visual tasks

(Figures 1E and S3; Table S2). These data suggest that gamma

band oscillations in the recorded areas might be induced by vi-

sual stimuli rather than timing prediction.

Five patients were implanted with electrodes through VC. In

Figure 1E, the average power of alpha band oscillations in VC ex-

hibited a significant increase prior to the timing prediction

behavior (tapping) in the prediction window, indicated by the

large positive power change index (see STAR Methods; Fig-

ure 1F). 21% (16 channels) of the 75 recording channels in VC

from 5 patients showed a significant alpha band power increase,

while 7% of the 75 recording channels exhibited a significant po-

wer decrease before the timing prediction (Figure 1G). No

obvious activation prior to tapping was observed in the training

window (Figure 1E, upper left panel). Both the fraction of trials

with elevated alpha oscillations and the fraction of predictive tap-

ping were higher in the prediction window than in the training

window (Figure S4). There was no significant increase in LFP

when the patient conducted random taps without visual stimuli,

indicating that tapping itself does not induce activity elevation in

VC (Figure S5).

To explore whether the elevated alpha band oscillations ap-

peared in the first session or gradually emerged as the patient

got familiar with the timing prediction task, we further analyzed

the power change index of alpha band oscillations in VC in the

seven sessions. As a result, we found that the power change

index decreased gradually with the number of sessions in the

visual task, whereas the index remained similar in the timing

task (Figure S6). These results indicate that the elevation of

alpha oscillation power in VC was directly associated with the

timing behavior. Interestingly, we found an increase in the

power of alpha oscillations in the precuneus, a visuospatial-

related brain area, and in that of theta oscillations in the hippo-

campus (Figure S3; Table S2). 10% of all the channels in

hippocampus (2 out of 21) showed a significant increase in

the theta band, while 5% of all the channels (1 out of 21) signif-

icantly decreased in the theta band, showing that the fraction of

channels with a significant increase in the hippocampus is

smaller than that in VC. Elevation in the beta band power prior

to tapping was also observed in precentral gyrus of patient Y

(Figure S7). These results collectively indicate that increased

alpha band power in VC plays a role in the timing prediction

behavior in humans.
V-anesthetized are 0.194, 0.161, 0.177, and 0.190, respectively. There was no s

ditions.

(G) Predictive accuracy of predictive lickings in the prediction window. p = 3.47

(H) Left panel: alpha band power with time in tasks with 5-s intervals. Moments w

task (blue line) are indicated by red dots along the x axis. Right panel: alpha band

task (purple line) was significantly higher than that in R task (green line) are indica

Bonferroni correction. Shaded areas represent SEM across mice.

n = 9 mice for 10-s interval and n = 11 mice for 5-s interval in timing task; n = 5 mic

***p < 0.001. Error bars represent SEM across mice in each task.

See also Figures S10 and S11 and Video S2.
Enhanced low-frequency phase synchrony in visual
cortex during timing prediction
The phase of intrinsic oscillations could be correlated with stim-

uli-induced activities across brain regions (Besle et al., 2011;

Calderone et al., 2014; Helfrich et al., 2019; Nobre and van

Ede, 2018). To study the phase synchrony between the oscilla-

tory activities and the prediction behavior, we analyzed inter-trial

phase clustering (ITPC) in the prediction window (see STAR

Methods). Except for a scattered increase of ITPC in VC (Fig-

ure 1H), no other brain regions displayed significant enhance-

ment of ITPC (Figure S8). The phase synchrony of delta band os-

cillations in VC showed significantly higher values prior to

predictive taps on average (Figure 1H). While alpha band oscilla-

tions exhibited elevated power prior to prediction, Figure 1H

showed that delta band oscillations in VC exhibited higher phase

synchronization before the onset of the timing prediction

behavior.

Previous studies suggest that synchronized low-frequency os-

cillations between different brain regions indicate communica-

tion among them (Fries, 2005). To further confirm whether the

correlation of low-frequency oscillations in VCwith timing behav-

iors involves other brain areas, we calculated inter-site phase

clustering (ISPC) of the low-frequency band between VC and

other synchronously recorded brain areas, namely precuneus,

hippocampus, amygdala, entorhinal cortex, and middle tempo-

ral gyrus. We found that VC did not show consistent phase syn-

chronization with the other brain areas (Figure S9). In summary,

prior to the timing prediction behavior, the power of alpha oscil-

lations and the phase synchrony increased significantly only in

VC but not in other recorded brain areas. These results indicated

that VC plays a critical role in visually cued timing perception.

Visual stimuli enhance timing prediction performance
in mice
Previous studies and our results suggested that oscillations and

the phase synchrony in VC were strongly correlated with the

timing prediction behavior in humans (Carrillo-Reid et al., 2016;

Salvioni et al., 2013). To study the underlyingmechanism, we de-

signed a synchronization-and-prediction behavioral paradigm

with visual stimuli (Figure 2A; see STAR Methods) to experiment

on mice, similar to that studied with human participants (Fig-

ure 1A). Meanwhile, we recorded multisite LFPs in layer 2/3 of

V1. The behavioral experiment consisted of two different tasks.

In the timing task, 20 periodic drifting gratings (10- or 5-s interval,

1-s duration) were displayed on amonitor with simultaneous wa-

ter reward, followed by a 60-s gray background that served as a

prediction window (timing, Figure 2A). To explore whether mice
tatistical significance between 5 and 10-s in either timing or reward-only con-

3 10�4 and t = 5.10. Paired t test.

hen the power in timing task (orange line) was significantly higher than that in R

power with time in tasks with 10-s interval. Moments when the power in timing

ted by purple dots along the x axis. Two-way repeated measured ANOVA, with

e for 10-s interval and n = 6 mice for 5-s interval in R task. *p < 0.05, **p < 0.01,
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Figure 3. Timing prediction behavior correlated with V1 LFP activities in mice

(A) Examples of predictive lickings and entrained LFP activities on day 7 in timing task with 5-s intervals (S: session). Gray areas: periodic drifting gratings. Black

traces: raw LFP data. Gray traces: power spectrum density (PSD). Vertical ticks: licking. Colored triangles, traces and vertical ticks indicate expected stimuli,

entrained LFPs and predictive lickings, respectively.

(B) Normalized percentage of intervals of LFP events in the prediction window. Vertical dashed lines represent the expected onset of either 5 or 10-s stimulus.

(C) Normalized cross-correlation coefficients between LFPs and lickings from day 1 to 7 in timing task with 5-s intervals.

(D and E) Examples of normalized cross-correlation coefficients between LFPs and lickings in the training window (T) and the prediction window (P) on day 1 (D1)

and day 7 (D7) in timing task with 5-s intervals.

(F) Successive predictive lickings (left) and entrained LFP activities (right) in the prediction window. p = 0.020 and t = 2.72 for behavior; p = 0.0014 and t = 2.90 for

LFP. Paired t test.

(legend continued on next page)
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utilize the visual stimuli for timing prediction, we designed the

reward-only task in which mice received 20 periodic water

reward (10- or 5-s intervals) without visual stimuli (reward-only,

R. Figure 2A).

On training day 7, head-fixed mice in the timing group licked

around the stimulus interval in the prediction window

(Figures 2B–2D; Video S2). The lick time in the prediction window

in the timing task showed more distinct peaks at the stimulus in-

terval than that in the reward-only task for both 5- and 10-s inter-

vals (Figures 2B–2D, S10A, S10B, and S11), demonstrating that

micemade predictionsmore accurately at the predictive window

in the timing task than in the reward-only task. The average inter-

vals of licking behaviors (m) were also around 5 and 10 s (Fig-

ure 2E). These behavioral data together demonstrated that visual

stimuli significantly enhanced the timing prediction behavior in

mice, indicating that visual input plays an important role in the

timing prediction behavior.

Psychophysics experiments on the perception and estimation

of time showed that the variability of interval timing is propor-

tional to the duration of the interval, known as Weber’s law

(Cheng et al., 2008; Meck et al., 2008; Penney et al., 2008;

Toda et al., 2017). The standard deviation over mean (s/m) of

the licking behaviors in timing tasks was similar for both 10-

and 5-s intervals (Figure 2F). Interestingly, s/m in timing tasks

was significantly smaller than that in reward-only tasks (Fig-

ure 2F), and the observed s/m in both tasks was smaller than

the case when the time stamps of licking behaviors were

randomly shuffled (Figure S12). These results suggest that

mice weremainly using the visual cue to time and that the reward

also contributed to their behaviors. Note that s/m in timing tasks

decreased fromday 1 to day 7 andweremuch smaller than those

in reward-only tasks (Figure 2F), suggesting that the mice

improved their timing capabilities using the visual cue during

the 7-day training.

When the latency of licking to the presumed stimulus in the

prediction window was smaller than ± 20% of stimuli intervals,

we deemed that the mice exhibited timing prediction behaviors,

and ‘‘entrained LFPs’’ were LFP up states that happened during

those intervals. We then defined the predictive accuracy as the

percentage of timing prediction lickings over total lickings during

the prediction window. Consistent with the decreasing s/m value

(Figure 2F), mice exhibited progressively more timed licking be-

haviors in the prediction windows in the 7-day training period

(Figures 2G, S10C, and S10D).
(G) The average interval of the first, second, and third licking behavior or LFP activ

and t = 2.83 for 1st and 2nd and p = 2.323 10�3 and t = 3.35 for 1st and 3rd; for LF

dashed line represents the average spontaneous interval of LFP.

(H) Decay time constants of licking behaviors (upper) and entrained LFP activi

characteristic time of successive predictive lickings or entrained LFP activities in th

decay time constants of licking behaviors: p = 2.79 3 10�5 and t = 6.84. Compa

t = 7.38 for LFP. Paired t test.

(I) Successive entrained LFP activities in the prediction window depend on incre

(J) Entrained fractions of LFP in the prediction window of visual-only-awake and

(K) Normalized interval distributions of LFP activities in visual-only-awake and vi

n = 9 mice for 10-s interval and n = 11 mice for 5-s interval in timing task; n = 5 m

n = 5 mice for 10-s interval and n = 5 mice for 5-s interval in awake experiment

experiments. *p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent SEM acros

See also Figures S10–S14.
Visual stimuli also enhanced the timing of LFP during timing

prediction. The power of alpha band in mouse V1 increased dur-

ing prediction in the timing task but not in the reward-only task

(Figure 2H), which shared the similar change found in human

data (Figures 1E and 1F). Similar to that observed in human

data, ITPC in mice appeared to be higher prior to the timing pre-

diction. However, no significant difference between timing and

reward-only tasks was observed (Figure S13).

Interval-timing prediction is correlated with entrained
activity in V1 in mice
Intriguingly, a peak in LFP power in V1 occurred around the time

of licking behaviors (Figures 3A and S10E). These results indi-

cated a potential correlation between licking behaviors and

LFPs in V1. LFP events became more concentrated around 5

or 10 s in the timing task from day 1 to day 7 (Figure 3B). The

cross-correlation curve between LFPs and licking behaviors in

the prediction window exhibited 10- or 5-s periodicity, confirm-

ing that the activity in V1 is correlatedwith the interval-timing pre-

dictive behavior (Figures 3C–3E, S10F, and S10G).

By day 7, mice had on average two successive predictive lick-

ings as well as entrained LFPs in the prediction window in the

timing tasks but not in the reward-only tasks (Figures 3F and

S10H). From the first to the third predictive lickings for 5-s inter-

val tasks, the average interval of the behavior increased signifi-

cantly from around 5 s to over 10 s, indicating that the animal

may no longer be anticipating the occurrence of a reward by

the third lick (Figures 3G and S10I). Meanwhile, the LFP peak

gradually approached the average spontaneous interval (about

7 s) in Figures 3G and S10I. Moreover, mice retained the predic-

tive licking behavior as well as the entrained LFPsmuch longer in

the timing task than that in the reward-only task (Figures 3H and

S10J). These results further showed that the V1 activity exhibited

similar properties to the visually cued interval-timing-predictive

behavior.

Both the presence of reward and the anesthetic status of mice

were likely to influence the emergence of entrained activities in

V1, so we investigated if these two factors contributed to the en-

trained activities. We presented 50 drifting gratings (with 10- or

5-s interval) to one eye while recording LFPs in contralateral V1

in both awake-behaving (without reward) and anesthetized C57

mice (Figure 2A). Periodic stimulations induced entrained LFPs

in V1 under both conditions, with increasing (successive) entrain-

ment when the number of stimuli became larger (Figures 3I and
ity in the prediction window for 5-s interval tasks. For behavior events, p = 0.016

P events, p = 0.0038 and t = 3.69 for 1st and 3rd. Student t test. The horizontal

ties (lower) in timing (red) and R (blue) task. The decay time constant is the

e prediction window. Details can be seen in the STARMethods. Comparison of

rison of decay time constant of entrained LFP activities: p = 1.40 3 10�5 and

asing stimulus numbers in visual-only-anesthetic trials.

visual-only-anesthetic trials.

sual-only-anesthetic tasks.

ice for 10-s interval and n = 6 mice for 5-s interval in R task.

s; n = 10 mice for 10-s interval and n = 6 mice for 5-s interval in anesthetized

s mice in each task.
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Figure 4. Optogenetic manipulation of V1 activities changed the interval-timing predictive behavior

(A) Schematics of prediction suppression training in timing task. A 30-s blue laser stimulus was delivered onto contralateral V1 after 20 stimuli in PV-ChR2 mice,

referred to as timing-L1.

(B) Examples of predictive lickings and entrained LFP activities on training day 7 of the timing-L1 task. Gray and blue areas represent drifting gratings and blue

laser, respectively. Gray traces represent PSD. Black triangles, colored traces, gray traces, and colored vertical ticks represent expected time of stimuli, en-

trained LFPs, PSD, and predictive lickings, respectively.

(C) Left: mean lick times over 1-s time bins in the prediction window of the timing-L1 ctr and the timing-L1 tasks on day 7. Vertical dashed lines represent the

expected onset of the 5- or 10-s stimulus. Shaded areas represent SEM over mice. Right: normalized percentage of intervals of LFP events in the prediction

window of the timing-L1 ctr and the timing-L1 task. Timing-L1: PV-ChR2 mice conducted the timing-L1 task. Timing-L1 ctr: C57 mice conducted the timing-

L1 task.

(D and E) Predictive accuracy of predictive lickings and entrained LFP activities in the prediction window of the timing-L1 task.

(F) Schematics of stimulation suppression training in timing task. Periodic blue laser stimuli were delivered onto contralateral V1 during drifting gratings stim-

ulation in PV-ChR2 mice, referred to as timing-L2.

(legend continued on next page)
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3J). For mice both awake and anesthetized, the normalized per-

centage of entrained LFPs peaked around the corresponding in-

tervals (Figure 3K). These results showed that the emergence of

entrained activities in V1 is independent of reward and cognitive

status.

Since the experimental tasks involved movements, similar

timing experiments were also conducted in the M2 area.

Increasing predictive accuracy of licking behaviors was

observed from day 1 to day 6, while the predictive accuracy of

LFP remained almost the same (Figure S14).

Entrained activities in V1 contribute to the interval-
timing predictive behavior
Namboodiri and colleagues previously demonstrated that the

optogenetic perturbation of V1 during inter-trial interval caused

a consistent shift in the time of the reward-seeking behavior

(licking), which nonetheless abided by temporal scaling (Nam-

boodiri et al., 2015). In our study, the correlation between

timing-predictive lickings and LFP activities in V1 suggested

that V1 activation in the prediction window also contributes to

the timing process. Optogenetic activation of ChR2-expressing

PV+ neurons across V1 in PV-ChR2 mice (PV-Cre mice crossed

with loxP-flanked-hChR2-tdTomato mice) (Cang and Feldheim,

2013) largely suppressed the spontaneous activities and visual

responses in V1 (Figures S15A and S15B). While PV-ChR2

mice were normally trained to lick water with visual cues in the

training window, we suppressed V1 of the PV-ChR2 mice with

30-s continuous laser stimuli during the prediction window

(timing-L1 experiments, Figure 4A). The accuracy of predictive

lickings increased over 7 days in the training window

(Figures S15C and S15D), with the performance of timing predic-

tion similar to that of the control group, indicating the successful

conditioning of the licking behavior with visual cues for the PV-

ChR2 group. On the other hand, optogenetic manipulationmark-

edly reduced the occurrence of both entrained LFP activities

and predictive licking behaviors in the prediction window for
(G) Examples of predictive lickings and entrained LFP activities on training day 7

laser, respectively. Black triangles, colored traces and colored vertical ticks indi

tively. Gray traces represent PSD.

(H) Left: mean lick times over 1-s time bins in the prediction window of the timin

expected onset of the 5- or 10-s stimulus. Shaded areas represent SEM. Right: n

the timing-L2 ctr and the timing-L2 tasks. Timing-L2 ctr: C57 mice conducted th

(I and J) Predictive accuracy of predictive lickings and entrained LFP activities in

(K) Schematics of optogenetic activation training in the R task. Periodic blue la

rewards in CaMKIIa-ChR2 mice, referred to as R-L.

(L) Left: mean lick times over 1-s time bins in the prediction window of the timin

expected onset of the 5- or 10-s stimulus. Shaded areas represent SEM. Right: n

the R ctr and the R-L tasks. R-L: CaMKIIa-ChR2 mice conducted the R task. R c

(M) Examples of predictive lickings and entrained LFP activities on training day 7

gray traces, and colored vertical ticks indicate expected time of stimuli, entraine

(N and O) Predictive accuracy of predictive lickings and entrained LFP activities

5-s behavior: compared with timing-ctr, p = 0.0012 and t = 4.32 for timing-L1, p =

and t = 4.72 for R-L. 10-s behavior: compared with timing-ctr, p = 0.0036 and t = 3

ctr, p = 4.283 10�4 and t = 4.98 for R-L. 5-s LFP: compared with timing-ctr, p = 1.

compared with R-L ctr, p = 8.613 10�4 and t = 4.49 for R-L. 10-s LFP: compared

t = 4.50 for timing-L2; compared with R-L ctr, p = 7.66 3 10�4 and t = 4.61 for R

n = 9, 6, 8, 7, 7, and 5mice for timing-L1 ctr, timing-L2 ctr, timing-L1, timing-L2, R-L

L2 ctr, timing-L1, timing-L2, R-L, and R-L ctr in the 10-s task. **p < 0.01, ***p < 0

See also Figures S15–S21.
both 5- and 10-s intervals (Figures 4B and S16A). The interval

distributions did not show distinct peaks around the stimulus in-

tervals (Figures 4C, S15E, and S15F), consistent with the larger

standard deviation over mean (s/m) in the timing-L1 group than

that in the control group (Figure S15G). The fraction of predictive

licking behaviors and entrained LFPs in V1 almost reached the

baseline (Figures 4D and 4E).More importantly, therewas no sig-

nificant cross-correlation between LFPs in V1 and licking behav-

iors in the timing-L1 experiments (Figures S15H–S15K). In a

word, the suppression of entrained activities in V1 stops the visu-

ally cued interval-timing behavior from being accurately per-

formed, indicating that V1 activities in the prediction window

play an important role in accurate timing prediction.

Visual signals from the retina were delivered not only to V1 but

also to various brain regions including the superior colliculus. To

explore whether visual pathway other than retino-thalamic-

cortical contributes to the timing behavior, we optogenetically

suppressed V1 activities during visual stimuli in the training win-

dow in timing tasks (timing-L2 experiments, Figures 4F and

S16B). The control group (C57) exhibited the interval-timing pre-

dictive behavior and entrained activities in V1 (Figure 4G). Opto-

genetic suppression of visual responses in V1 of PV-ChR2 mice

disrupted the licking accuracy at each stimulus (Figures S17A

and S17B). In the prediction window, the distributions of the pre-

dictive licking behavior and LFPs were wider andmore scattered

than control mice (Figures 4G, 4H, and S17C). Predictive accu-

racy and fraction of entrained activities (Figures 4I and 4J), scalar

property (Figures S17D and S17E) as well as the correlation be-

tween LFPs and predictive behaviors (Figures S17F–S17I) in V1,

were disrupted. Hence, periodic suppression during the training

window not only disrupted predictive lickings at the point of each

training stimulus but also negatively influenced timing behaviors

in the prediction window. Optogenetic suppression of auditory

cortex (AU1) of PV-ChR2 mice did not disrupt the predictive

licking behavior, compared with control mice, indicating that

inactivation of auditory cortex did not cause the mice to be
of the timing-L2 task. Gray and blue areas represent drifting gratings and blue

cate expected time of stimuli, entrained LFPs and predictive lickings, respec-

g-L2 ctr and the timing-L2 tasks on day 7. Vertical dashed lines represent the

ormalized percentage of intervals of LFP events in the prediction window from

e timing-L2 task.

the prediction window from the timing-L2 task.

ser stimuli were delivered onto contralateral V1 and synchronized with water

g-L1 ctr and the timing-L1 tasks on day 7. Vertical dashed lines represent the

ormalized percentage of intervals of LFP events in the prediction window from

tr: C57 mice conducted the R task.

of the R-L task. Blue areas indicate blue laser. Black triangles, colored traces,

d LFPs, PSD, and predictive lickings, respectively.

in the prediction window of the R-L task.

7.443 10�4 and t = 4.63 for timing-L2; compared with R-L ctr, p = 6.323 10�4

.68 for timing-L1, p = 6.193 10�4 and t = 4.72 for timing-L2; compared with R-L

273 10�4 and t = 5.68 for timing-L1, p = 2.393 10�5 and t = 6.96 for timing-L2;

with timing-ctr, p = 2.403 10�4 and t = 5.32 for timing-L1, p = 8.653 10�4 and

-L. Paired t test.

, andR-L ctr in the 5-s task; n = 7, 5, 7, 8, 9, and 7mice for timing-L1 ctr, timing-

.001. Error bars represent SEM across mice in each task.
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less apt to perform in behavioral tasks (Figure S18). These results

indicated that entrained activities in V1 relied on periodic visual

stimuli and contributed to the predictive behavior. We noticed

no remaining entrained activities in timing-L1 experiments but

some in timing-L2 experiments. These activities may be due to

rhythmic retinal input to other visual nuclei. In summary, sup-

pression of V1 responses to grating stimuli disrupted predictive

licking behavior, further suggesting that V1 plays an important

role in visually cued timing.

To confirm that periodic activities in V1 led to entrained activ-

ities and regulated the predictive behavior, we replaced periodic

visual input with periodic optogenetic activation of V1 in R-L ex-

periments. To activate V1 neurons, we injected adeno-associ-

ated viruses (AAV-EF1a-DIO-hChR2(H134R)-mCherry) encod-

ing ChR2 into layer 2/3 of V1 of CaMKIIa-Cre mice to express

ChR2 in excitatory cortical neurons, namely ‘‘CaMKIIa-ChR2

mice’’ (Figure S19A; Niell, 2015). Presentation of laser light in

V1 induced robust spiking responses in CaMKIIa+ neurons in

V1 (Figures S19B and S20). Periodic optogenetic stimuli-

induced robust predictive licking behaviors and entrained LFPs

in the prediction window in CaMKIIa-ChR2 mice (Figures 4K–

4O and S19C–S19F). The quantification of timing prediction

behaviors, including successive numbers of predictive licking

behaviors and entrained LFPs (Figures S19G and S19H), as

well as cross-correlations between predictive licking behaviors

and LFPs (Figures S19I–S19L), were similar to those in visually

cued timing tasks in Figure 3. We also found that as few as 3 pe-

riodic stimuli could induce entrained activities 70 s after the last

optogenetic stimulation (Figure S21). These results suggested

that periodic V1 activation is sufficient to induce timing predic-

tion behavior in mice.

Spike activities in entrained neurons in V1 exhibit
dynamic changes
We next explored the dynamics of V1 activities at the single-cell

level using in vivo cell-attached recording (Figure 5A; see STAR

Methods). When periodically stimulating C57 mice with visual

cues (30 drifting gratings for 10-s intervals and 50 drifting

gratings for 5-s intervals, 1-s duration), 26 out of 38 V1 neurons
Figure 5. Excitability dynamics of entrained neurons in V1

(A) Schematics of the in vivo patch-clamp recording setup. Periodic drifting grating

neural activities of contralateral V1 were recorded.

(B) Entrained spiking activities after 10- or 5-s periodic stimuli in example neuron

(C) Fraction of entrained neurons and scalar property (s/m) of spiking activities a

(D) Examples of excitatory responses during stimulation. Purple and orange hist

intervals, respectively; gray histograms represent the firing rate of inter-stimulus

(E and F) Average firing rate of entrained neurons during inter-stimulus intervals

interval case and purple curves represent the 5-s interval case.

(G and H) Average firing rate of unentrained neurons during inter-stimulus interva

(I and J) Fraction of entrained or unentrained neurons with increased firing rate d

(K) Schematics of excitatory responses recording in anesthetic CaMKIIa-ChR2 m

the expected (E) and unexpected time (U) in the prediction window, and beyond

(L) Examples of excitatory responses during the expected and unexpected tim

activities. Blue squares: laser stimuli. Gray dashed lines: the highest firing rate d

(M) Quantification of excitatory responses during laser stimuli. Dots with con

p = 3.61 3 10�6 for E versus B; p = 1.82 3 10�4 for E versus U; p = 7.11 3 1

p = 6.07 3 10�3 for E versus U; p = 3.89 3 10�7 for E versus Y. Student’s t test.

n = 38 neurons from 24mice for 10-s intervals and n = 32 neurons from 18mice for

in each task.
exhibited entrained properties in 10-s interval and 24 out of 32 V1

neurons exhibited entrained properties in 5-s interval (Figures 5B

and 5C). The scalar property (s/m) of entrained firing after two

stimulus intervals (5 or 10 s) also showed similar features (Fig-

ure 5C). Interestingly, the firing rates of entrained neurons

increased progressively during visual stimulation but decreased

at inter-stimulus intervals for both 10- and 5-s intervals

(Figures 5D–5F). Such dynamic changes did not occur in unen-

trained neurons (Figures 5G and 5H). Indeed, most entrained

neurons in V1 showed robustly enhanced activities during stim-

ulus presentation and depressed activities during inter-stimulus

intervals (Figures 5I and 5J).

To further elucidate whether the differential changes in the ac-

tivity level between stimuli and inter-stimulus intervals extends

into the prediction window (if no behaviors were measured),

we presented 5 random laser stimuli (0.5-s duration) to V1 in

the prediction window in CaMKIIa-ChR2 mice to measure the

excitability of the neurons (Figure 5K). Firing rates of entrained

neurons at the expected time (E) were significantly higher than

those at the unexpected time (U) and those before (B) or beyond

(Y) the prediction window (Figures 5L and 5M). In contrast, firing

rates of unentrained neurons remained unchanged in B, U, E,

and Y windows. These results suggested that V1 neurons

became more excitable when stimuli were expected to arrive

at the later stage of the stimulus window and in the prediction

window.

Population firing in V1 replayed in the predictionwindow
Entrained neurons in V1 exhibited their capability to retain inter-

val-timing information for a short period of time through dynamic

changes in firing patterns and excitability. We next explored the

possible source of timing information in V1 (Gu and Gong, 2016;

Townsend et al., 2017). Eichenbaum suggested that timing infor-

mationmay be coded through neuronal sequential firing (Eichen-

baum, 2014). This finding inspired us to investigate the replay of

firing sequence in a neuronal population during the inter-stimulus

intervals using amulti-electrode array while C57mice conducted

the timing task. The firing sequence was defined by the time of

peak firing rate during inter-stimulus intervals or within the
s were presented to one eye of anesthetic CaMKIIa-ChR2mice, and CaMKIIa+

s. Gray areas: drifting grating stimuli. Dashed lines: expected stimuli.

fter 10- or 5-s periodic stimuli.

ograms represent the firing rate of visual-evoked responses with 5- and 10-s

intervals; black triangles indicate the entrained spiking activities.

(gray curve) and 10-or 5-s periodic stimuli. Orange curves represent the 10 s

ls and 10- or 5-s periodic stimuli.

uring stimuli or inter-stimulus intervals.

ice. Laser stimuli were presented before the periodic drifting grating (B), during

prediction (Y).

e. Black squares: drifting grating stimuli. Black triangles: entrained spiking

uring the unexpected time (U).

nected lines indicate data from individual neurons. For 10-s intervals (left),

0�3 for E versus Y. For 5-s intervals (right), p = 4.43 3 10�6 for E versus B;

5-s intervals. **p < 0.01; ***p < 0.001. Error bars represent SEM across neurons
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Figure 6. Population firing sequences in V1 in the training and prediction windows

(A) Example of sequential firing during the inter-stimulus interval. Gray histograms represent PSTHs of each neuron; orange and purple lines indicate peak

function curves with Gaussian fitting for 5- and 10-s intervals, respectively. The matching index (I) is 0.97 and the matching probability (p_match) is 4.33 10�5 for

the 10-s interval. The index is 0.84 and the probability is 7.5 3 10�3 for the 5-s interval.

(B) Example of sequential firing of all inter-stimulus intervals and the prediction window. Note that �8 to �2 s in prediction window is defined as ‘‘unexpected’’

window for 10-s intervals and�4 to�1 s in prediction window is defined as ‘‘unexpected’’ window for 5-s intervals. The matching indices are 0.92 and 0.94, and

the probabilities are 2.6 3 10�4 and 1.9 3 10�4 for 10 and 5 s, respectively.

(C and D) Box plotting of matching index (I) and probability (p_match) of experimental and shuffled data from the comparison between last 20-11 and last 10-1

stimuli. p = 7.563 10�5 and t = 6.03 formatching index and p = 1.213 10�5 and t = 7.42 for probability between experimental and shuffled data. Paired t test. Each

dot represents the data from a single mouse. Red dots indicate the data corresponding to the firing sequences illustrated in Figures 6A and 6B.

(E) Matching fraction of the firing sequence between last 20-11 stimuli and last 10-1 stimuli.

(F andG) Similar to (C) and (D). The firing sequence between all inter-stimulus intervals and the prediction window. p = 6.963 10�4 and t = 4.66 for matching index

and p = 6.86 3 10�4 and t = 4.67 for probability between experimental and shuffled data. Paired t test. Red dots indicate the data corresponding to the firing

sequences illustrated in Figures 6A and 6B.

(H) Matching fraction of firing sequence for all inter-stimulus interval. ***p < 0.001.

n = 13 mice for 5-s intervals and n = 15 mice for 10-s intervals. Error bars represent SEM across mice in each task.

See also Figure S22.
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prediction window. We used a combined method to quantify the

sequence replay using matching index I and matching probabil-

ity p (see STAR Methods) (Ji and Wilson, 2007; Lee and Wilson,

2004). Specifically, for any given two sequences, the matching

index I_match measures the similarity between them, and the

matching probability p_match calculates the fraction of match-

ing indices equal to or larger than I_match among all possible

shuffled sequences. A threshold of p_match < 0.05 was used

as a criterion to evaluate matching significance between the

two sequences (see STAR Methods). We compared the

sequence in the last 20-11 stimuli with that in the last 10-1 stimuli
12 Neuron 110, 1–18, December 21, 2022
and the sequence calculated from all inter-stimulus intervals with

that in the prediction window. Most sequential neurons were

active in the ‘‘unexpected’’ window, indicating that these neu-

rons were ‘‘unentrained’’ neurons (Figures 6A and 6B). The

sequential neurons fire at similar rates during the inter-stimulus

intervals in most trials (Figure S22), confirming that sequential

neurons were ‘‘unentrained’’ (Figures 5G and 5H). As expected,

the sequential neurons fired around the same time in most trials

during inter-stimulus intervals (Figure S22). In both cases,

comparedwith shuffled data, experimental data had significantly

larger I_match values and smaller p_match values, with a higher



(legend on next page)
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matching fraction (the fraction of sequence pairs that met the cri-

terion of p_match < 0.05, Figures 6C–6H). These results demon-

strated that the replay of firing sequences within inter-stimulus

intervals extends into the prediction window.

Computational model for entrained activities in V1
Experiments in humans andmice showed that VC plays a crucial

role in visually cued timing experiments (Figures 1 and 4). More

interestingly, sequential firing on the neuronal level and elevated

excitability toward the end of the training window in visual

cortical neurons are timing-related features (Figures 5 and 6).

Inspired by these experimental observations, we hypothesized

that the sequential firing pattern retains timing features during

the periodic stimulation training, which leads to elevated excit-

ability through plastic changes in the cortical network. Guided

by this hypothesis, we proposed a computational model with a

two-layer network (see STAR Methods) to elucidate potential

mechanisms of the entrained activities (Figure 7A). The first layer

models VC, whose recurrent dynamics has two attractors repre-

senting up and down states (Holcman and Tsodyks, 2006). The

second layer models time cells that start to fire in a stereotyped

sequence (the sequence is Cells 1 / 2 / 3 / 4 / 5 in Fig-

ure 7A) after being stimulated by a short strong input (Buono-

mano and Laje, 2010; Cone and Shouval, 2021; Mi et al., 2013;

Veliz-Cuba et al., 2015; Voloh andWomelsdorf, 2016), a process

we call ‘‘time-cell resetting.’’ In the down states, neuronal noises

sporadically initiate the attractor network to the up state (Fig-

ure 7A, left subplot). In the up states, the high neuronal activity

triggers short-term depression (STD) of the recurrent connec-

tions in the attractor network, which soon drags the network

back to the down state (Neske, 2015). Training raises the up-

state-initiating threshold of the attractor network and potentiates

the synapses from some time cells (say, Cell 5 in the right subplot

of Figure 7A) to the attractor network. As a result of the raised

threshold in training, the noises can hardly initiate up state before
Figure 7. Computational model to explain entrained activities

(A) The model contains an attractor network modeling visual cortex and a group o

return to down state due to short-term depression (STD). The brief up state resets

training raises the up-state-initiating threshold of the attractor network and poten

(B) Clock-speed variability. The speed of sequential updating of the time cells m

(C) The proposed BCM-like plasticity rule of the synapses from the time cells to

(D) Left panel: experimental data of mice. Neuronal firing rates in V1 immediately b

states, stimulus-evoked up states with (paired) or without (N-paired) pairing sponta

as mean ± SEM over neurons. *p < 0.05; **p < 0.01; ***p < 0.001. Middle and rig

(E) Schematics of the training process. Stimuli (blue sparks at the top) with period T

arrows: weak (thin arrow) or strong (thick arrow) synapses. Dashed curved arrow

stimulus. Purple thick vertical lines: time-cell resetting. See further illustration of

(F) The probability distribution functions (PDFs) of the intervals between entraine

lines indicating their means.

(G) There may be several entrained intervals in each simulation session (see I for ill

and plotted the distributions of the average entrained intervals when stimuli period

of these two distributions.

(H) The change of firing rate of the attractor network within inter-stimulus interv

represent SEM over different simulation sessions.

(I) Firing rate, synaptic input from time cells Itime and neuronal firing threshold q of

entrained activities. Periodic stimuli are removed after the dashed vertical line. The

the firing rate higher than the dashed horizontal line. Asterisks indicate some spont

experiment (Figure S23).

See also Figures S23–S25.
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the firing of Cell 5, in the prediction window without stimulus, but

when Cell 5 fires, the strong synaptic input drives the attractor

network to up state. This up state resets the time cells, which

starts to fire in the sequence 1 / 2 / 3 /... until Cell 5 fires

again, causing another up state that resets the sequence again.

This is the mechanism of the periodic entrained-up states.

Due to the fluctuation of the dopamine level (Ruskin et al.,

1999; Soares et al., 2016), time cells have clock-speed variability

(Matell andMeck, 2004), whichmeans that the sequential updat-

ing speed is variable after each resetting (Figure 7B). To explain

the entrainment phenomenon under clock-speed variability, we

propose a plasticity rule similar to Bienenstock-Cooper-Munro

(BCM) rule for the synapses from the time cells to the attractor

network (Bienenstock et al., 1982; Shouval et al., 2002; Fig-

ure 7C): if the attractor network has high firing rate, the synapses

from the co-firing time cells are potentiated; if the attractor

network has intermediate firing rate, then the synapses from

the co-firing time cells are tagged by eligibility traces (Gerstner

et al., 2018) and become subject to depression by an external

stimulus. The firing rate of the mice VC neurons during a visual

stimulus presentation was high (or relatively low) if there was

no (or a) spontaneous up state happening immediately before

the stimulus, while the firing rate during an entrained-up state

was also relatively low (Figure 7D, left panel). Inspired by these

experimental observations, in our model, a stimulus potentiates

the synapses from the time cells (or tagged depressive eligibility

traces onto the synapses) if there is no (or a) time-cell-initiated up

state immediately before the stimulus. Time-cell-initiated up

states also tag depressive eligibility traces onto the synapses

(Figure 7D, middle and right panels). See Figure 7E for an illustra-

tion of the training process.

With clock-speed variability and this plasticity rule, the inter-

vals between the entrained-up states are equal to the stimulus

intervals on average and obey the scalar property (Figures 7F

and 7G) in our simulation (see Figure 7H for an example). Due
f time cells. Left: the attractor network can be kicked to up state by noises and

the time cells that start to fire in a stereotypical sequence (color bumps). Right:

tiates the synapses from Cell 5 to the attractor network.

ay be fast (upper subplot) or slow (lower subplot) after resetting.

the attractor network.

efore the stimulus during spontaneous (Spon) up states, entrained (Entrain) up

neous up states, when T = 5 (left bars) and 10 s (right bars). Data are expressed

ht panels: schematics of the learning rule.

train the network. Color circles: the activated time cells at specific times. Black

s: configurations of the synaptic strengths at the time immediately after each

the training process in Figure S24B.

d-up states when stimuli periods are 5 (blue) and 10 s (red), with vertical black

ustration). Here we first averaged over the entrained intervals in single sessions

s are 5 (blue) and 10 s (red). Inset: the ratios of the standard deviation overmean

als during training when stimuli periods are 5 (blue) and 10 s (red). Error bars

the attractor network in an example session. Black bars: stimuli. Black arrows:

last entrained up state cannot reset the time cells, which in our model requires

aneous up states immediately before stimuli, whichwere also observed inmice
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to a homeostatic mechanism (see STAR Methods) raising up the

initialization threshold of up states (Figure 7A, right panel), the

firing rate of the attractor network in between stimuli decreases

with the number of stimuli (Figures 7H and 7I), which is consistent

with the experimental observation of the firing decrease of en-

trained neurons (Figures 5G and 5H). Details of the modeling

can be found in supplemental information and Figures S24

and S25.

DISCUSSION

One challenge in understanding time perception is whether there

is a core timing circuit, or whether timing properties exist in mul-

tiple neural circuits (Merchant et al., 2013; Paton and Buono-

mano, 2018). To address this question, we first investigated

how distributed or localized are the brain areas involved in timing

perception on the scale of seconds. Previous studies identified

the cortico-thalamic-basal ganglia circuit as one of the core

timing structures (Merchant et al., 2013). Specifically, theta

(near alpha frequency) oscillations have been shown to be corre-

lated with visually cued interval timing (Zold and Shuler, 2015)

and visually cued action timing (Levy et al., 2017) in the primary

VC.With simultaneous SEEG recordings from 28 brain regions in

humans, our study showed a significant increase in the correla-

tion of alpha oscillation power in VC with time perception. There

is also enhanced phase synchrony in alpha oscillations within the

prediction window. These observations are consistent with pre-

vious studies using fMRI and EEG recordings that indicated os-

cillations in VC may be involved in temporal expectations (Bueti

et al., 2010; Cravo et al., 2013; Keitel et al., 2017; Levy et al.,

2017; Mathewson et al., 2009; Thut et al., 2006; Zold and Shuler,

2015). The absence of elevated oscillation power or phase syn-

chronization in basal ganglia, thalamus, and other cortical areas

suggests that time information is represented in a localized

manner during the prediction of timing with the absence of sen-

sory cues. We also found that VC did not exhibit significant ISPC

with other brain regions, suggesting that low-frequency oscilla-

tions in VC with timing prediction features were not likely depen-

dent on other brain areas, in line with other studies indicating that

VC itself could be a site of time generation (Chubykin et al., 2013;

Monk et al., 2020; Namboodiri et al., 2015). One limitation in

SEEG recording, however, is the incomplete coverage of all brain

areas, so we do not rule out the possibility that other unrecorded

brain areas are important for interval timing.

Due to the low incidence of epilepsy in the occipital lobe and

the challenge of direct manipulation of neural activities in well-

defined brain areas in humans, it is difficult to further identify

the causal role of VC in time perception in humans. By con-

ducting optogenetic manipulations in the same time prediction

behavioral paradigm in mice, the causal role of VC in visually

cued timing perception was further confirmed, consistent with

a previous study (Liu et al., 2015). Moreover, we found two key

properties in VC that contribute to time perception: sequential

replay and the existence of ‘‘entrained neurons,’’ respectively,

represented by the time-cell layer and the attractor-network

layer in our model. These two layers do not correspond to spe-

cific layers in V1 anatomically but are instead convenient for im-

plementation. It is likely that the same cortical circuit has both
highly activated up state and a stereotypical temporal sequence

during its down state. Our experiment found that the firing rates

of entrained neurons in between stimuli decreasedwith the num-

ber of stimuli (Figures 6E and 6F), which was consistent with the

attractor network in the model (Figure 7H). The sequential neu-

rons, which were unentrained neurons, have similar firing rates

in different inter-stimulus intervals (Figure S22): this is an exact

property of the time cells in the model.

Formal models of learning cued interval timing in V1 were

supported by experimental evidence in mice (Cone and

Shouval, 2021; Huertas et al., 2015; Veliz-Cuba et al., 2015).

Sequential replay of awake experience during sleep has been

reported previously in V1 (Ji and Wilson, 2007). Computation-

ally, sequential replay can be realized through a number of

mechanisms, such as tapped delay lines, reservoirs of

response time constants or oscillation frequencies, and recur-

rent networks containing high dimensional line attractors (Buo-

nomano and Laje, 2010; Mauk and Buonomano, 2004). Explo-

ration of the source of sequential replay may help answer the

long-standing question of how the brain codes time. Future

studies on entrained neurons using single-cell resolution func-

tional imaging may give more profound insight into how the an-

imal predicts timing on the order of seconds (Carandini et al.,

2015; Madisen et al., 2015). For example, it is plausible to study

whether the entrained neurons respond to similar visual stimuli

and have overlapping receptive fields, or whether activation of

these entrained neurons is necessary or sufficient for the time

perception behavior of the animal.

Previous studies showed that neuronal activities in the auditory

cortex in a synchronization-and-continuation task are required

for anticipatory auditory-motor response in humans (Pecenka

et al., 2013) and mice (Li et al., 2017), indicating that auditory-

and visual-based time perception may share the same mecha-

nism. Our results, together with these previous findings, suggest

that second-scale interval timing, at least with respect to the

anticipation of predictable sensory stimuli, may substantially

manifest in the sensory processing regions that respond to the

relevant stimuli. The ‘‘clock’’ for such second-scale timing may

not have a fixedmeter, but instead can be flexibly tuned by recent

experience. Repeated occurrence of sensory stimuli with given

intervals in the recent pastmay suggest the likelihood that similar

stimuli will occur at the particular interval in the near future. Accu-

rate anticipation of such stimuli may prepare individuals to avoid

possible threats or obtain potential rewards.

Clock-speed variability, which is the variability of the updating

speed of the time-keeping neuronal firing sequence, has been

proposed to be the source of the variability of behavioral tempo-

ral estimation (Matell andMeck, 2004). Our computational model

demonstrates amechanismwhereby the scalar-timing variability

of up states can be learned under clock-speed variability, which

establishes a generic theory of behavioral scalar-timing vari-

ability together with our experimental finding of the correlation

between cortical up state and licking (Figure 3).

Previous studies found that V1 can learn the single interval be-

tween a stimulus and an expected reward by persistently firing at

a high rate during that interval (Shuler and Bear, 2006). Our study

implemented a beat-timing paradigm, which may have different

neural substrates and mechanisms with the single-interval case
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(Teki et al., 2011). However, our work and a previous work (He

et al., 2015) suggest that V1 uses a similar learning principle for

both beat and single-interval timing: a self-correcting process

where synapses are potentiated and depressed respectively to

correct delayed and premature timing expectation, except that

the synapses from time cells to the attractor network are plastic

in our model, whereas the recurrent synapses in the network are

plastic in the previous work (He et al., 2015). Therefore, self-cor-

recting process is a universal computational principle to acquire

timing ability.

In summary, we showed that time information on the second

scale is mostly represented in VC through local circuit dynamics.

Our study also opens up the possibility of dissecting brain net-

works by combining human SEEG recordings with circuit-level

studies in mice.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
Participants included 11 patients (7 males and 4 females; age: 25.6 ± 5.3 years old) with drug-controllable epilepsy. They were im-

planted with chronically intracranial depth electrodes as a preoperative procedure to evaluate epilepsy surgery or to localize seizure

focus for potential surgical resection. All the parameters of implanted electrodes were determined by clinical surgery need rather than

the needs of our research. All patients were treated in Huashan Hospital (Shanghai, China), Fudan University (Shanghai, China) and

signed informed written consent to participate in the study. All procedures were approved by Huashan Hospital’s institutional re-

view board.

Animals
All animal care and experiments were performed in accordance with Fudan University Shanghai Medical College Institutional Animal

Care and Use Committee guidelines. Wild-type (C57BL/6J) mice were obtained from the Slac Laboratory Animal Co. (Shanghai,

China). CaMKIIa-Cre mice (Jackson lab, US. Stock #005359, RRID: IMSR_JAX:005359) and PV-Cre mice (Madisen et al., 2012)

were crossed with loxP-flanked-ChR2-tdTomato mice (Jackson lab, US. Stock #012567, RRID: IMSR_JAX:012567). Mice pups

were bred with a housing group of nomore than 3 adult mice. 8-12 weeksmale mice were used in the experiments, separately reared

in a housing group of no more than 5. All mice were maintained in a 12-hour light-dark cycle at 18-22�C. Mice were numbered blindly

for behavioral training or electrophysiological recording experiments. All experiments were conducted during the light cycle.

METHOD DETAILS

Experimental design
Wedesigned 2 timing perception tasks for each participant, named tapping and grating. In each task, participants needed to focus on

the center of a monitor (13-inch MacBook pro, Macintosh) that was placed about 50 cm in front of the patient’s eyes and displayed

visual stimuli. Visual stimuli were generated by custom-written codes in the Psychopy software (a Python-based psychophysics

package). These periodic drifting gratings were square waves with 100% contrast, temporal frequency of 2 Hz and spatial frequency

of 0.05 cycles per degree. Different time intervals (5-s or 10-s intervals; 1s duration, followed by 4-s or 9-s grey background; n = 20)

were used in the study. The participants were unaware of the time intervals throughout the experiments. In the tapping task, partic-

ipants were instructed to tap the spacebar of the keyboard at the exact time point when they predicted that gratings would appear.

The accurate tapping and grating time were imported in real time into a stereo-electroencephalography (SEEG) recording system by

custom-written codes in Arduino platform. In the grating task, participants were instructed to stay relaxed and look at the monitor

screen to avoid overthinking as much as possible.

Eye movements
TRACKPixx3 (VPixx Technologies Inc., Montreal, Canada) was used, according to product instructions, to track the eye movements

of participant Y when performing tasks. The pupil center and iris of two eyes were recognized by the software during recording. The

vertical eye movements were calculated in further analysis using custom-written MATLAB codes.

SEEG recording and preprocessing
SEEG signals were acquired using a clinical recording system (EEG-1200C, NihonKohden, Irvine, CA)with a sampling rate of 2000Hz

and were band-pass filtered between 0.5 Hz and 600 Hz using Neurofax EEG-1200 acquisition system (NIHON KOHDEN Corpora-

tion, Japan). After signal recording, signals were notch-filtered to eliminate 50 Hz noise and harmonics. All SEEG data were collected

when the participants did not show any epileptic symptoms. Data of 11 participants were collected for 7 consecutive sessions. Two

tasks were performed in the sequence of tapping and grating groups for each session.

Electrode location
The locations of each SEEG electrode contact were extracted from pre-implant MRI and postoperative CT scans before further anal-

ysis. We used FMRIB Software Library (FSL) (Jenkinson et al., 2012) for co-registration to MNI space and marked each electrode

contact manually. Then we remapped the MNI coordinates into the Talairach space with Bioelectromagnetism toolbox (http://

eeg.sourceforge.net/bioelectromagnetism.html) in MATLAB and extracted the Talairach label with the Talairach Daemon software

(Lancaster et al., 2000). All electrodes were classified into discrete brain areas based on the Brodmann area and their functions.

Frequency decomposition and power
Signals were analyzed mostly by custom-written scripts in MATLAB and some functions in EEGLAB. First, signals were cut into

event-related epochs, including 8 s before event marker and 7 s after event marker. The segmented data were zero-padded to mini-

mize filter-induced edge effects. A wavelet transformation ranged from 2 Hz to 150 Hz through 30 logarithmically spaced frequencies

with the complex-valuedMorlet wavelet was performed on raw signals of each segment. The event-induced power was calculated by

squaring the analytic amplitude envelope andwas normalized to the pre-trial baseline (-2 s to -1 s) using the relative change in decibel
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conversion (dB). We then averaged through the same brain area across all the participants. To examine whether the event-induced

power differed between the timing prediction task and the visual task, we quantified the significance of an index between the two

tasks. The index is defined as:

power� 2�0s � power0�2s

jpower� 2�0sj+ jpower0�2sj
Power-2�0s is the average power from -2 s to 0 s.

In addition, to further explore the percentage of power-increased channels, we calculated Z-scores for theta band (3-8 Hz), alpha

band (8-12 Hz), beta band (12-30 Hz), low gamma band (30-80 Hz) and high gamma band (80-150 Hz), respectively. The channels

with absolute Z-scores no less than 1.96 before time 0 were regarded as being significant.

Inter-trial phase clustering (ITPC)
The strength of inter-trial neural synchrony was quantified by inter-trial phase clustering (ITPC):

ITPCtf =

�����n� 1
Xn

trial = 1

eiktfr

�����
where n is the number of trials and eiktfr is from Euler’s formula and provides the complex polar representation of a phase angle k on

a certain trial at time-frequency point tfr. ITPC measures the extent to which the phase angles of different trials are clustered at each

time-frequency point in polar space, with values approaching 1 indicating stronger phase synchrony. For each brain region, the ITPC

was then averaged by channels across all the participants. To test the statistical significance of ITPC, the observed ITPC was

compared with a null distribution, which was created by repeating the procedure of shuffling the labels of time series and computing

ITPC of the permuted signal for 500 times. The observed ITPC was considered significant when it was above the threshold, which

was the 95th percentile of the surrogate ITPC. The non-significant ITPCwas set to 0. Thenwe counted the number of significant points

and defined it as the area during periods of -2�0 s and 0�2 s in both timing and visual tasks, in 4 oscillation bands (delta band, theta

band, alpha band and beta band) respectively. A similar analysis was also performed when computing ISPC.

Inter-site phase clustering (ISPC)
The phase-based connectivity between two brain regions was measured by inter-site phase clustering (ISPC):

ISPCtf =

�����n� 1
Xn

trial = 1

eið4atf �4btfÞ
�����

It calculates the phase angle difference 4atf � 4btf between the channel pair (a, b) at time point t and frequency f averaged across n

trials. For each brain region, the ISPC was then averaged by channel pairs across all the participants. Then the procedure of shuffling

the labels of time series and computing ISPC of the permuted data was repeated for 500 times, and a null distribution was created.

The observed ISPC was compared with the null distribution and the part that exceeded 95th percentile of the surrogate ISPC was

considered significant. The non-significant ISPC was set to 0. And we counted the number of significant points and defined it as

the area during periods of -2�0 s and 0�2 s in both timing and visual tasks, in 4 oscillation bands (delta band, theta band, alpha

band and beta band) respectively.

Virtual reality (VR) system
The virtual reality system applied to our behavioral experiments was custom-built based on a commercial virtual reality system

(PHENOSYS, Germany). Our virtual reality system included five TFT monitors, 200 mm jet balls, a ball holder with a X/Y motion

sensor, a controllable device with air puff andwater rewards. The jet ball was located on an air-cushioned spherical treadmill allowing

head-restrained mice to navigate in Y direction. Five TFT surround monitors (19-inch, resolution 1280 3 1024, refresh rate 75 Hz,

33 cm away from the eyes) displayed custom-written images that covered 216 degrees of the visual field. PhenoSoft VR software

controlled the virtual reality that was displayed on the surrounding TFT monitors by a series of parameters defined in an XML config-

uration file, such as the size, shapes, colors or textures of the walls. In our behavioral experiment, we designed a 400-meter-long

corridor with low-contrast (50%) grating images. Another software Phenosoft control delivered programmed water rewards or air

puffs and recorded the accurate position of the mice in the virtual corridor. The water reward was delivered through a tube driven

by a peristaltic pump at a rate of 50 mL per second.

Visual stimuli presentation
Visual stimuli were generated by custom-written codes in Psychopy software (a Python-based psychophysics package), containing

periodic drifting gratings (1-s duration, followed by 4-s or 9-s grey background, 5-s or 10-s interval). These stimuli were square waves

with 100% contrast, temporal frequency of 2 Hz and spatial frequency of 0.05 cycles per degree. In VR experiments, drifting gratings

were delivered via five surrounding TFT monitors. In non-VR experiments, drifting gratings were delivered via an LCD monitor

(150 3 90 mm2, 800 3 480 pixels, 60 Hz. FEELWORLD, China) placed 8 cm from the eye.
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473 nm blue laser (DPSSL DRIVER, China) was used to optogenetically manipulate the neural activities of V1 in PV-ChR2 and

CaMKIIa-ChR2 mice. In PV-ChR2 experiments, we enucleated one eyeball and implanted a LED onto the surface of V1 ipsilateral

to the enucleated eye to minimize the ipsilateral influence when inhibiting contralateral V1 activities. We provided two types of opto-

genetic inhibition patterns: one was 20 periodic blue laser stimuli with 2.5-s duration for 5-s intervals and 5-s duration for 10-s inter-

vals to inhibit the spontaneous and visual-evoked activities of V1 by periodic gratings; the other was 30s continuous blue laser stimuli

to V1 after drifting gratings. In CaMKIIa-ChR2 experiments, two optogenetic activation patterns were implemented: onewas periodic

blue laser stimuli with 1-s duration for both 5-s and 10-s intervals to excite V1 activities; the other was 5 random-interval blue laser

stimuli with 0.5-s duration to V1 30 s and 3 min after drifting gratings, respectively.

Stereotaxic surgery and LED implantation
All mice were anesthetized with isoflurane and placed into a stereotaxic apparatus (RWD, China). 1% lidocaine (10 mg/mL lidocaine

in saline. MP Biomedicals, US) was subcutaneously injected under the scalp. After removal of the scalp, the skull was dried and

roughened. A titanium alloy head bar (about 53 30 mm) was implanted on left hemisphere with two skull screws and dental cement

(C&BMetabond, Parkell, US). A craniotomy window in the skull of the right hemisphere was created stereotaxically in V1 (3.1-4.2 mm

posterior to bregma and 2.0-3.2mm lateral) and the durawas removed carefully. Freshwarm (37 �C) low-gelling temperature agarose

(1.5% in sterile buffered saline. A9414, Sigma, US) covered the craniotomy. A custom-built LED (1.6 3 0.8 mm, l = 473 nm. King-

bright, China) was placed onto the surface of exposed V1 and sealed to the skull by dental cement. Mice were given at least 3 days to

recover from surgery before behavioral experiments.

Prediction tasks in VR system
Mice implanted with head bars were put on a water-restriction schedule, in which they only received 1-1.5 mL water per day in three

consecutive days. Their body weight was checked daily to maintain no less than 80% before water restriction. Head-restrained mice

were first trained to run on a jet ball in 100 meters virtual corridor. 200 mL water rewards were delivered after mice arrived at the desti-

nation. Each mouse was trained for 3-5 days until it reached the destination in 5 minutes for three consecutive sessions. Mice were

then trained to seek rewards with timing tasks in 4 training phases: 1) running 60s in the corridor to accustom to the behavioral envi-

ronment; 2) 20 high-contrast drifting gratings (details described previously) coupled with a half drop of water reward (about 0.02 mL)

were presented on two opposite monitors; 3) the prediction window with grey background were presented for 60s; 4) another 60s

running in the corridor. Mice were trained for at least 6 sessions per day during 7 training days. In the reward-only task (R), water

rewards were periodically presented 20 times with 5-s or 10-s intervals in the virtual corridor. In the optogenetic manipulation

task, head-fixed PV-ChR2 and CaMKIIa-ChR2 mice were trained with blue laser stimuli presented to V1 (similar to Timing or R

task, see visual stimuli presentation for detailed stimulation pattern). During all behavioral experiments, animal behaviors were moni-

tored with infrared cameras (JAI, Denmark) or a digital video recorder (Sony, Japan), with a sampling rate at 25 frames per second.

The 5-s and 10-s tasks were all conducted in different cohorts of mice.

In vivo extracellular e-phys recording
In awake-behaving recordings, we performed two different recording paradigms: chronic recording and acute recording. For acute

recording, we trained at least 8 head-fixed mice as a group, and randomly chose one of them to acutely record its V1 activities each

day. By day 7, V1 activities of all remaining mice (in general, 2 or 3 mice were the rest) were acutely recorded V1 activities. In awake

and anesthetic recordings, mice were deeply anesthetized with 2.5% isoflurane in oxygen for 20 min before surgery. The nose and

mouth were placed in a respiratory mask and mice were kept on a heating pad (FHC Inc., US), followed by subcutaneous injection of

1% lidocaine under the scalp. Themice were fixed in a holder and placed on a braked jet ball. After removal of the scalp, a craniotomy

window in the skull was created stereotactically in V1, and the dura was removed carefully. Microelectrode arrays were stereotacti-

cally inserted into L2/3 of V1 to collect neural activities. Mineral oil covered the whole exposed V1 to keep the brain moist, while a

warmmelted mixture of wax and mineral oil covered the recording sites to eliminate the movement artifact of mice. The electrophys-

iological recording began after mice were completely awake after surgery. None of the mice cohorts were trained with cues and re-

wards at 5 s or 10 s interval before the anesthetic experiments. Mice with water restriction for at least one day were trained to drink

water with a tube on a VR setup for about two days.We randomly presentedwater drops tomicewith intervals ranging from 2 s to 20 s

such that no mice experienced rewards with fixed intervals at 5 s or 10 s prior to the recording. None of the anesthetized mice

received any visual cues before acute recording.

For chronic recording, we implanted a microelectrode array (16 channels, 125-mm intercontact spacing, Microprobes, US) into the

primary visual cortex in the right hemisphere of head-fixed mice. Firstly, the scalp was removed, and the skull was dried and rough-

ened. Then two stainless screws, which were soldered with 2 cm silver wire, were inserted into the front and tail of the skull as ground

and reference electrodes. A craniotomy window in the skull was drilled in V1, ranging about 2 3 2 mm, and then the dura was

removed carefully. Themicroelectrode array wasmicro-managed into the craniotomy of layer 2/3 of V1, safeguarded with low-gelling

temperature agarose and Kwik-Sil and Kwik-Cast silicones. When the agarose and silicones became gel phase, we used dental

cement to fasten all the devices on the skull, including the head bar, screws and the microelectrode array. A cylinder copper

mesh flapping around the probes was clinging to the surface of the skull. The ground and reference electrodes from the two screws
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were soldered onto the ground lines of the microelectrode array, and then soldered on the cylinder copper mesh to shield all envi-

ronmental noise. After recovery of at least 5 days, the behavioral training schedule and neural activity collection were conducted.

All electrophysiological data were amplified and digitized using the Spike2 system (Cambridge Electronic Design, UK) or the Neu-

ralynx system (Neuralynx Inc., US). Neural signals in V1 were recorded continuously with a range of 0.3-5,000 Hz and sampled at 30

kHz; spiking signals were band-pass filtered at 300-5,000 Hz and local field potentials were band-pass filtered at 0.3-300 Hz.

Potentiation analysis
To calculate the duration of entrained LFP as well as predictive licking behaviors, we plotted the average licking rate or number of

entrained LFP with a 1s bin size in the prediction window. An exponential decay fitting function was performed to fit the average firing

curve and to obtain the time constant of exponential decay. The exponential decay fitting function was: y = y0 + A1*exp(-x/t1), where

y0 = offset; A = amplitude; t1 = time constant. Here, t1 is the decay time constant.

In vivo cell-attached patch-clamp recording
We performed in vivo cell-attached patch-clamp recording in CaMKIIa-ChR2 mice. Firstly, we prepared the recording pipettes with

optimum resistance 5-7 MU by a filament micropipette puller (Sutter, US) a few hours before the experiment. The V1 area in anes-

thesia CaMKIIa-ChR2mice was exposed and covered with warm (37�C) sterile buffered saline. Recording pipettes filled with artificial

cerebrospinal fluid (ACSF. 124 mM NaCl, 3 mM KCl, 2 mM CaCl2$2H2O, 1 mMMgCl2, 1.25 mM NaH2PO4, 26 mM NaHCO3, 10 mM

Glucose) were exerted about 300 mbar positive pressure and moved forward into V1 by a micro-manipulator (Sutter, US). The pos-

itive pressure in the recording pipette was tuned down to about 30mbar once in the brain andmoved at 10 mmper second. The resis-

tance of the recording pipette fluctuated dramatically when it touched the soma or axon of a neuron. An increase in pipette resistance

(stable at about 15-20 MU) indicated that the pipette was approaching a nearby neuron. Positive pressure was quickly removed and

retained for a few seconds. Negative pressure at about -30 mbar was applied if the resistance stopped increasing. Experiments

started at about 50-300 MU, indicating close attachment between the recording pipette and the cell membrane.

Immunohistochemistry
PV- or CaMKIIamice were deeply anesthetized by overdose isoflurane and transcardially perfused with 4%paraformaldehyde after-

wards. The brain was dissected and fixed in 4% paraformaldehyde overnight at 4�C. The brain was dehydrated with 30% Sucrose in

PB (324 mM Na2HPO4
.12H2O, 76 mM NaH2PO4

.2H2O) overnight at 4�C, mounted in O.C.T at -80�C for 30 min, and sectioned at

30 mm using a cryostat (LEICA CM1950; Germany). Brain slices were washed with TBS (12.4 mM Tris, 37.7 mM Tris-HCl,

154.0 mMNaCl, PH = 7.4) for 4 times, permeabilized with 0.5% Triton-X100 in TBS for 20min at room temperature, and then blocked

with 10%donkey serumand 2mgml-1 BSA in TBS containing 0.05%Triton-X100 for 1-2 hour at room temperature. After incubating in

the primary antibody (Rabbit anti-DsRed; Takara Clontech, 632496, Japan, RRID: AB_10013483; 1:1000 for 24 hours, respectively) at

4�C, the slices were washed in TBS for 4 times every 15 min. Slices were then incubated for 4 hours at room temperature in the sec-

ondary antibody (Rhodamine (TRITC)-donkey anti-rabbit, 711-025-152; 1:200; Jackson ImmunoResearch, US, RRID: AB_2340588).

These fluorescently stained samples were washed in TBS for 15 min, counterstained with DAPI (Sigma, 200 ng ml�1) for 3-5 min fol-

lowed by 4 washes in TBS every 10 min and mounted with AQUA-MOUNT (Thermo Scientific, US).

Automated detection of licking behavior
We developed an automatic licking-behavior algorithm based on the core package OpenCV in Python. The behavioral movies were

imported into Python and separated into single frames. The position of Region of Interest for licking (ROIlicking, 23 2 pixels) was deter-

mined around the jaws of themice. The position of ROI for control (ROIcontrol, 23 2 pixels) was 15 pixels belowROIlicking with the bright

background area. In general, the luminance of the jaw or the tongue was darker than that of control areas. Customized codes in Py-

thon automatically compared the luminescence of ROIlicking and ROIcontrol for all frames and sorted the frames into licking behavior

when luminescence of ROIlicking was less than 90% of that of ROIcontrol. The rest frames were sorted as non-licking behaviors. The

intervals between two successive licking behaviors were calculated. If the intervals of two licking frames were smaller than 1s, they

were considered to be from the same licking. Customized codes in Python printed the licking intervals in CSV format.

Detection of upstate from PSD of LFPs
Upstate-like activities were identified from the LFP signals. Mice with no observable upstate-like events were excluded from the anal-

ysis, typically smaller than 1-fold of the signal to noise ratio. Time-dependent power spectra density of LFP signals (band-passed

range was 0.3-300 Hz) were calculated in Spike2 software, with the frequency resolution 0.5 Hz and the sample interval 0.25 s.

An automatic thresholdingMATLAB program (custom-written, MathWorks, US) calculated the event-detecting thresholds for the po-

wer spectra density. Briefly, the data were initially segmented into two parts using a randomly-selected threshold. A new threshold

was then computed as the average of themeans of these two parts. This processwas repeated until the threshold stopped changing.

The starting and ending time points when the power was larger than the threshold value were recorded. The event intervals were

calculated as the time difference between two neighboring starting time points. In order to identify a valid event, the following criteria

were used: 1) to exclude stimulation and movement artifacts, the duration of an event was larger than 0.15 s; 2) the time difference

between two neighboring events was larger than 0.4 s. To visualize the distribution of LFP events, we counted the number of LFP
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events in every 1s time bin each training day and calculated the percentage of LFP events of each bin over the total number of LFP

events that day. We then normalized the LFP percentage by dividing the percentage of LFP events of each time bin by the largest

percentage of LFP events over 7 training days.

Pairwise correlation analysis
Pairwise correlation analysis was calculated between the licking behavior and PSD in the Origin software (OriginLab Corporation,

US). PSD was calculated from LFPs by Fast Fourier Transformation in Spike2 software and the onset of the licking behavior was

changed to continuous curves by a kernel of Gaussian fitting in Spike2 software. Based on our previous successive predictions

data, we chose 30-s PSD and licking data to calculate the pairwise correlation. We chose 30-s spontaneous data before training

as pre, the last 3 stimuli data as during and first 30-s after stimuli as post training to compare the dynamics between PSD and the

licking behavior. Both PSD and licking data were imported into Origin, and normalized to [0, 1] according to each data set. The

cross-correlation curves were computed between licking curves and PSD in pre, during and post conditions in Origin. Peaks in cor-

relation coefficient curves were detected using a Peak Analyzer toolbox in Origin, which offers an interactive interface to walk us

through the steps of advanced peak analysis. All detected peaks were plotted using probability density distribution to visualize

the peaks distribution around stimulation interval, such as 0, ± 10, ± 20, ± 30 for 10-s intervals and 0, ± 5, ± 10, ± 15, ± 20, ±

25, ± 30 for 5-s intervals.

Matching analysis of firing sequence
To compare the firing sequence of neurons in two different periods, we used a combinatorial method. Firstly, we calculated the spikes

number of each bin from the PSTHs of neuron spiking in two different periods. The bin size of a PSTHwas 0.1s and width time was 4s

for 5s interval or 9s for 10s interval stimuli. Secondly, we plotted the histogram distribution of spikes numbers, and calculated the

firing peak time of different periods using Gaussian peak-fitting function in Origin. Thirdly, we set the firing sequence of one period

as a template by sorting the firing peak time of each neuron, and then ranked the firing sequence of another period across the same

neuron in the template. For example, we set the firing sequence of last 20-11 as the template, which was

123456789(10)(11)(12)(13)(14) for 10-s intervals and 123456789(10)(11)(12) for 5-s intervals, and then ranked the firing sequence

of last 10-1 stimuli as 123569(10)87(11)(12)(13)(14) for 10-s intervals and 1245387109(11)(12) for 5-s intervals. We then defined a

matching index I to measure the similarity between the template sequence and the ranked sequence. For example, we gave an

example of dataset with a number of M neurons in a frame sequence and combined a total of M (M-1) / 2 neuron pairs. If m was

the number of pairs with the same order in the frame and n was the number of pairs with a different order in the frame, we defined

thematching index I as (m - n) / (m + n), ranging from -1 to 1.When Iwas equal to 1, it indicated that the firing sequence of the neurons

in the frame in two periods were exactly the same; when I was equal to -1, it indicated that they were completely opposite. We also

defined a matching probability p_match to measure how significant the matching was, which is the proportion of a matching index

equal or larger than the defined index I among all potential sequences. For small M (M% 11), we actually generated all combinations

of M neurons and calculated all matching index I and matching probabilities p_match. For large M (M > 11), we had to randomly

generate 10000 possible combinations as approximate data set because it was too large to generate all combinations. Unless other-

wise specified, we used a threshold p_match < 0.05 as a criterion to determine the significance between two sequences. We also

randomly generated 3 sequences for each template sequence as ranked sequence, named shuffle. We computed the average

matching index I and matching probability p_match from 3 shuffled ranked-sequence as control data.

Computational model for timing activity in V1
In Figure 7, we simulated a two-layer network. The first layer of the network modeled V1, in which neurons were connected through

synapses with short-term depression (STD). The mean activity of this network was approximated by the following dynamic system

(Holcman and Tsodyks, 2006):

t
dV

dt
= � V+mUwrrðVÞ+ Itime + Istim + Ib + 2 (Equation 1)
dm

dt
=

1 � m

tSTD
� mUrðVÞ (Equation 2)

where V is the average synaptic input (measured as the change ofmembrane potential in response to it, in unit of mVwith a baseline

at 0 mV) with the time constant t = 0.08s; wr = 31.9 mV/Hz is the average strength of the recurrent synapses in V1; U = 0.8 and

tstd = 0.8s are utilization parameter and recovery time constant of STD; m is the depression parameter of STD; Ib = 1.4 mV is back-

ground input; and 2 summarizes all sources of noise. r(V) is the average firing rate with supra-linear dependence on Vwhen V is small

and linear when V becomes large (Pitkow and Meister, 2012):

rðVÞ =
logð1+ expðb2ðV � qÞÞÞ

b1

(Equation 3)
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where q (4.7 mV before training) is the firing threshold, and b1 = 3.72 Hz-1 and b2 = 0.25 mV-1 are two shape parameters. Itime is the

input current from the second layer of time cells, defined as

Itime =
X
a

Jasa (Equation 4)

with Sa = 0, 1 being the state of the ath time cell (indicating whether the time cell is inactive or active), and Ja (0 mV before training)

being the synaptic strength from the ath time cell to the attractor network. The noise 2 is modeled as a Gaussian process with auto-

correlation C2ðtÞ;2ðt0ÞD = s2nexpð � jt � t0j =tnÞ, with sn = 0.56 mV and tn = 0.58s. During training, external stimuli came every T = 5s

or 10s time, lasting for 1s, duringwhich Istim = 5mV; Istim = 0 in the absence of external stimuli. The parameter values in ourmodel were

chosen so that some parameters (such as t,U, tSTD and q) do not deviate too much from the values suggested in the literature (Holc-

man and Tsodyks, 2006), and the dynamic behavior of firing rate r looks similar as observed in our experiment.

As explained in reference (Holcman and Tsodyks, 2006), the dynamics of this model may contain two attractors (up and down

states). While the transition between these two states is induced by noise, the duration that the system spends on the two states

depends on model parameters. Numerically, we defined spontaneous up state in the absence of external stimuli as the following:

the up state started when r rose up across rup = 0.8 Hz and ended when r fell down across rdown = 0.2 Hz. During this period, rmight

fluctuate and went across rup many times. We defined the time of the up state as the middle time between the period when r rose up

across rup for the first time and when its last time fell down across rup. The duration between the times of two up states after training

was what we used to calculate entrained intervals in Figure 7.

The second layer had 2000 time cells, each of which had two states Sa = 1, 0, representing whether or not it was active. EveryDttime

time, we randomly selected 20 time cells, letting their states be 1. Time-cell resetting happened 0.5s after the beginning of an external

stimulus or a spontaneous up state. At time-cell resetting, Dttime was randomly chosen from a Gaussian distribution centered at

Dttime = 0:33s with a standard deviation of 0.15. This randomness of Dttime changed the updating frequency of the activity pattern

of the time cells after each resetting, modeling clock-speed variability. At the same time as time-cell resetting, the random number

generator for the time-cell selection was reset to its initial state so that the sequence of activity pattern of the time cells started to

repeat.

There are three ingredients in the plasticity rule of the synapses from the time cells to the attractor network (Figures 7C–7E). Firstly,

the synapses from active time cells are potentiated at the time of a stimulus. Secondly, this potentiation does not happen if there is a

spontaneous up state shortly before the external stimulus. Thirdly, a spontaneous up state induces depression eligibility trace in the

synapses from the time cells that initiate the spontaneous up state, so that an external stimulus then depresses the synapses accord-

ing to the eligibility trace.

The first and second terms above were modeled such that when an external stimulus comes, the synapses from the active time

cells are potentiated byDwP = 0.15mV, until reaching the upper bound 0.325mV. However, this potentiation does not happen if r > rup
at a certain time within 2.5s before the stimulus.

To model the third term above, we supposed that spontaneous up states of the attractor network in the absence of external stimuli

induced depression eligibility trace in the synapses from the time cells to the attractor network (Gerstner et al., 2018). This eligibility

trace does not change synaptic strength by itself. However, when a stimulus comes, neuromodulators can be released due to the

saliency of the stimulus, which depresses the synapses according to the eligibility trace (Gerstner et al., 2018; Redgrave and Gurney,

2006). Specifically, we supposed that in the absence of external stimuli, the eligibility trace ea in the synapse from the ath time cell to

the attractor network was updated as

dea

dt
= � hdsaðt � εpreÞQðr � qdepÞ (Equation 5)

where sað ,Þ is the state of the ath time cell as a function of time andQ is Heaviside step function. Therefore, when the firing rate r

was larger than qdep = 0.4 Hz, then negative eligibility trace started to accumulate with a rate hd = 0.5 mV$Hz-1$ s-1 in the synapses

from the time cells that were active εpre = 0.2s before the current time. Here we added a small εpre value to represent the causality

between the pre- and post-synaptic neuronal activities. When an external stimulus came, the synapses from the time cells to the

attractor network were depressed according to the eligibility trace Ja / Ja + ea, until reaching the lower bound 0 mV, then ea was

reset to 0.

External stimuli also induced intrinsic or synaptic homeostasis in the attractor network (Turrigiano, 2011). In Figures 7F–7I, we only

considered intrinsic homeostasis, by supposing that when an external stimulus came, the firing threshold q (see Equation 3) of the

attractor network was increased by 0.3 mV, until reaching the upper bound 7.7 mV.

In Figures 7F–7H, data were collected from 1024 training trials. In each trial, we trained the network using 31 periodic stimuli, and

observed the entrained intervals before 400s after the last stimuli.
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Our learning rule vs classic Hebbian rule
Here we further explain the training process illustrated in Figure 7E in the main text. We compare the training process when the syn-

apses from the time cells to the attractor network are changed according to our learning rule with the case when these synapses are

changed according to the classic Hebbian rule (Figure S25B). We hope that readers can better understand the merit and the design

motivation of our learning rule through this comparison.

We trained the network using the classic Hebbian rule, so that when the attractor network was in an up state, the synapse from the

co-firing time cells were potentiated. We found that the entrained intervals were significantly smaller than the period T of the stimuli

under the classic Hebbian rule (Figure S24A). Notably, the distribution of the entrained intervals tended to peak at two places: one at

about 2s, and the other at a value slightly smaller than T (Figure S24A). The training process under the Hebbian rule is illustrated in the

left column of Figure S24B. The two peaks in the entrained-interval distribution correspond to the entrained up states initiated byCells

2 and 4 respectively.

Our learning rule was designed with the motivation to remove these two peaks (Figure S24B, right column). Firstly, the up state

initiated by Cell 4 in the fourth row of the right column of Figure S24B tags a depression eligibility trace on the synapse from Cell

4, which is then implemented by the stimulus soon afterward, depressing the synapse from Cell 4. Secondly, the up state initiated

by Cell 4 also reduces the firing rate of the attractor network during the stimulus to the intermediate level (see Figure 7D in the main

text for experimental evidence) so that the synapse from Cell 2 that is co-active with this stimulus is also tagged by a depression

eligibility trace immediately implemented by the stimulus itself. Because the synaptic strength from Cell 2 is already at the baseline

level, this synapse effectively remains unchanged. Therefore, after training under our learning rule, the network can generate en-

trained up states with entrained intervals unbiased to T (Figure S24B, 5th row, right column).

Why is the depression eligibility trace an important ingredient of our learning rule? Why are the synapses not depressed immedi-

ately in response to an intermediate firing rate of the attractor network? The reason is that in that case the entrained-up states will be

able to depress the synapses after the removal of the periodic stimuli, which makes the entrained intervals get successively longer

(Figure S24C). This contradicts with the observation in our mice experiment: the entrained intervals got successively longer when the

period of external stimuli T = 5s but got successively shorter when T = 10s, so that the entrained intervals gradually approached to the

spontaneous inter-up-state intervals before training in both cases (Figure S10I). Besides, in anesthetic mice, the number of succes-

sive periodic entrained up states was more than that in awake mice (Figures 3F and 3I), which could be up to 6 for T = 5s and 3 for

T = 10s; so it is unlikely that synapses could be immediately depressed by entrained up states.

Advantages of high plasticity rate
In this section, wewill discuss the advantages of a high plasticity rate during learning: fast entrainment, effectiveness and robustness.

(1) By high plasticity rate, wemean that the change of synaptic weight during plasticity is fast enough: a stimulus-evoked up state

potentiates a synapse by a large value Dwp and a time-cell-initiated or stimulus-evoked up state depresses a synapse by a

large value Dwd. In our model, Dwp and Dwd are so large that a synapse gets close to its maximal strength once potentiated

and gets close to its minimal strength once depressed. Physiologically, synaptic strength takes binary values with abrupt tran-

sition in between (O’Connor et al., 2005), which may be the biological realization of such a high plasticity rate.

(2) By fast entrainment, we mean that only a few period stimuli are necessary to generate entrained up states. Taking the default

parameters (see STARMethods), our model has a high probability of generating entrained up states after 20 stimuli. The same

number of stimuli was also used in our mice experiments.

(3) By effectiveness, we mean unbiasedness and scalar property. Specifically, we denote the ith entrained interval of the ath ses-

sion to be Iia. We estimate the interval timing acquired by the network in the ath session by averaging all the entrained intervals

(i.e., calculating Ei (Iia)). By unbiasedness, we mean that the expectation of Ei (Iia) over sessions (i.e., Ea (Ei (Iia))) is equal to T; by

scalar property, we mean that the standard deviation of Ei (Iia) over sessions (i.e., Stda (Ei (Iia)) is proportional to T.

(4) By robustness, we mean that the effectiveness of our plasticity rule is insensitive to the parameter values in the model.

In the rest of this section, we will present more simulation results of our biologically plausible model introduced in themain text and

explain the effectiveness of the biologically plausible model by analytically studying a simplified model. Our simulation also demon-

strated the robustness in high plasticity rate during learning.

The synaptic potentiation and depression during learning can be quantified by Dwp and Dttimehd respectively. Dwp is the synaptic

potentiation caused by a stimulus; hd is the accumulation rate of the depressive eligibility trace; and Dttime is the average duration of

the activity of a time cell. We simulated our model using the following two sets of parameters:

(1) KeepDwp�Dttimehd = 0 and changeDwp (so hd is also changed accordingly). We studied different learning rates (quantified by

Dwp and hd) in this way and found that fast learning speed facilitated the generation of entrained up states using fewer stimuli

(Figure S25A).

(2) Keep Dttimehd = A and increase Dwp with the constraint that Dwp � Dttimehd R 0; or keep Dwp = A and increase hd with

the constraint that Dwp � Dttimehd < 0. We studied the potentiation-depression imbalance in this way. We denote Iia to be

the duration of the ith entrained interval in the ath training session. We quantify the mean of entrained intervals using
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Ea (Ei (Iia)), and quantify the scalar property using zscalar defined below:
zscalar =

��mratio; 5s

�
sratio;5s � mratio; 10s

�
sratio;10s

��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
mratio; 5smratio; 10s

��ðsratio;5ssratio;10sÞ
q (Equation 6)

where mratio; 5s = Ea (Ei (Iia)) and sratio;5s = Stda (Ei (Iia)) when T = 5s and mratio; 10s and sratio;10s are the corresponding values when

T = 10s. zscalar is the relative error between mratio; 5s /sratio;5s and mratio; 10s /sratio;10s. Good scalar property is indicated by small

zscalar. We found that with a high plasticity rate (i.e., large A value), Ea (Ei (Iia)) stayed close to T and zscalar kept below 0.12 in a large

range of Dwp � Dttimehd values, suggesting good unbiasedness and scalar property (Figures S25B and S25C). When the plasticity

rate was small (i.e., small A value), both the mean and zscalar became sensitive to the change of Dwp �Dttimehd: in other words, the

parameter range that generated good unbiasedness and scalar property shrunk (Figures S25B and S25C).

In conclusion, a high plasticity rate facilitates the generation of entrainment using fewer stimuli and improves the robustness of the

unbiasedness and scalar property of the entrained intervals with the change of potentiation-depression imbalance.

To understand the effectiveness of our plasticity rule under a high plasticity rate, we developed a simple analytically tractable

model to better manifest the learning process. For the simplicity of the following discussion, we introduce the concept of psycholog-

ical time. Because of clock-speed variability, the timewhen a time cell becomes active is variable after time-cell resetting (Figure 7B in

the main text). Suppose on average, a specific time cell is active at time t after resetting, then we call it the psychological time of the

animal when this time cell is active at time t, and denote this time cell as St. In other words, psychological time represents the timing

preference of time cells, and measures the subjective timing sense of the animal.

Suppose wt is the synaptic weight from St to the attractor network, and we consider an array of them {wt}t, with the psychological

time t = [-ðN+ 1ÞDttime

2 + T] + Dttime, [-
ðN+ 1ÞDttime

2 + T] + 2Dttime, [-
ðN+ 1ÞDttime

2 + T] + 3Dttime, $ $ $, [-
ðN+ 1ÞDttime

2 + T] + NDttime, so the mean psy-

chological time of {wt}t is T and the difference between the psychological time of adjacent weights is Dttime. For simplicity, we denote

wi (i = 1, 2, $ $ $, N) to be the weight with psychological time Psy(i) = [-ðN+1ÞDttime

2 + T] + iDttime.

Training of this simple model is performed in discrete time. Each time step represents the synaptic change induced by a stimulus.

At each time step, we perform three operations, listed below:

(1) We randomly choose one weight wt from the set of weights {wi}i. Because of clock-speed variability, not the same time cell

fires at the times of different stimuli. If wt is chosen, it means that the time cell SPsy(t)
fires at the time of the stimulus studied in

this time step.

(2) If all wis with i < t cannot induce up state of the attractor network, wt will be potentiated by Dwp. This means that the synapse

from the time cell co-active with the stimulus will be potentiated if there is no spontaneous up state before the stimulus (see

dashed boxes B2 and B3 in Figure 7E of the main text or the 1st-3rd rows of the right column of Figure S24B for this case).

(3) If some wi with i < t induces an up state, wi will be depressed by Dwd and no synapse is potentiated by this stimulus. This

means that a spontaneous up state before the stimulus induces synaptic depression, see dashed box B4 in Figure 7E of

the main text or the 4th row of the right column of Figure S24B for this case.

In this simplified model, wi˛[wmin, wmax], and wmax is large enough so that an up state will surely be induced by an active time cell

whose synaptic weight iswmax, whereaswmin is small enough so that no up state will be induced by an active time cell whose synaptic

weight iswmin. In the fast plasticity limit,Dwp =wmax –wmin andDwd =wmax�wmin, whichmeans that the change of synaptic strength

at each time step is so large that wi gets its maximal and minimal possible value once potentiated or depressed.

We denote the distribution of the weight index chosen in Step 1 to be ptime(t). Here we make the following claim that is the foun-

dation to understand the effectiveness of our plasticity rule:

Claim 1: In the fast plasticity limit, if ptime(t) is a uniform distribution, then after a large number of training steps, the psychological

times of the entrained intervals have expectation T and a standard deviation proportional to T.

Note that the psychological time of an entrained up state depends on the first weight that takes wmax: if wt = wmax and wi = wmin

ci < t, then the entrained up state happen at psychological time Psy(t ); if wi = wmin for all, however, then no entrained up state will

happen after training. After a large number of training steps, the last weight in the array {wi} (i.e., wN) has a probability 1 to be wmax

(because it cannot be depressed back towmin once potentiated). So the case of no entrained up state will not happen after long-term

training nor be considered in the following discussion. From now on, we denote the first-large weight to be the first weight that takes

wmax: in other words, if wt = wmax and wi = wmin ci < t, then wt is the first-large weight.

To prove Claim 1, we first prove a stronger claim:

Claim 2: If ptime(t) is a uniform distribution, then after a large number of training steps, the probability that wt to be the first-large

weight is equal to 1
N for any t.
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To prove Claim 2, we denote At = {wi|iR t} and At = {wi|i < t}. First, let’s think about the following training process and consider the

first-large weight in At. Suppose thatwa is chosen in a time step. If a < t, noweights in Atwill be updated. If aR t, the weights in At can

be updated only if wi = wmin for all wi˛At. When the latter happens, each weight in At has equal probability to be chosen, just like

the case when the training is operated on At. Therefore, although the weights in At gate the updating of At, they do not influence

this updating once it happens. After a sufficient number of training steps, the statistics of At should be equal as the case

when At is removed so that the training is directly operated on At. Now let us consider wt, i.e., the first weight of At. When At is

to be updated, if wt is chosen, it will surely be wmax at the end of this step, so it will be the first-large weight of At; but if wt is not

chosen, then it will surely bewmin at the end of this step, so it will not be the first-large weight of At. If ptime(t) is a uniform distribution,

the probability thatwt is chosen is 1/|At|, so the probability thatwt is the first-large weight of At is also
1

jAtj, with |At| being the number

of weights in At. The probability thatwt is the first-large weight of the whole set Awhole = {wi|i = 1, 2, $ $ $ N} is PFirstLarge(wt |Awhole) =

[1 � PFirstLarge(w0|A0)] $ [1 � PFirstLarge(w1|A1)] $$$$$$$$$ [1 � PFirstLarge(wt�1|At�1)] $PFirstLarge(wt |At ), with PFirstLarge(wi|Ai) being the

probability that wi is the first-large weight in set Ai. Therefore,

PFirstLargeðwtjAwholeÞ =

�
1� 1

N

��
1� 1

N � 1

�
/

�
1� 1

jAt � 1j
�

1

jAtj =
N � 1

N

N � 2

N � 1
/
jAt � 1j � 1

jAt � 1j
1

jAtj =
1

N

This proves Claim 2.

Claim2means that thepsychological timesof theentrainedupstates haveequal probabilitywithin theset {Psy(i)} (i=1, 2, $ $ $ $ $ $,N)

after training. The expectation of this uniform distribution is at itsmiddle point T and its standard deviation is proportional toN,which is

proportional to T (the reason why Nf T is that because of clock-speed variability, the broadness of the distribution of psychological

time around a given physical time T scales with T). So Claim 1 immediately follows Claim 2. The unbiasedness and scalar property of

our plasticity rule are then proved, after noting that Ei(Iia) (with Iia being the ith entrained interval of the ath session) is the numeric esti-

mation of psychological time of the entrained up states after training.

We numerically tested Claim 2. Consistently, we found that the distribution of first-large weight tended to be uniform after a suf-

ficient number of time steps (Figure S25D). The change of synaptic weights {wi}i during training is illustrated in Figure S25E.

The above derivation assumes that the ptime(t) in Claims 1 and 2 is a uniform distribution. Physiologically, it is more plausible to

assume that ptime(t) is not a uniform distribution, but instead a Gaussian distribution centering around T. We numerically tested Claim

1 when ptime(t) was Gaussian distributed around T (Figures S25F–S25I). We found that the expectation of the psychological time of

the entrained intervals stayed very close to T, with almost constant ratio between the standard deviation and mean when N changes

(Figures S25H and S25I). This suggests that the effectiveness of the plasticity rule is well preserved with biologically more plausible

ptime(t ).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed in OriginLab andMATLAB. All data sets were tested for normality using Kolmogorov-Smirnov test

and homogeneity of variance using F-test. Data with normal distribution were calculated with student’s t test or Two-Way ANOVA

with post-hoc Bonferroni’s test as indicated. The paired t test was used for all paired comparisons. The Wilcoxon sign-rank test,

was performed to compare the significance of differences in data that were not normally distributed. Statistical parameters including

exact value of ‘n’ and what ‘n’ represents are reported in the figured legends. In all cases, the criterion for statistical significance was

p < 0.05 and error bars represented SEM.
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