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IMPORTANCE Alcohol abuse correlates with gray matter development in adolescents, but the
directionality of this association remains unknown.

OBJECTIVE To investigate the directionality of the association between gray matter
development and increase in frequency of drunkenness among adolescents.

DESIGN, SETTING, AND PARTICIPANTS This cohort study analyzed participants of IMAGEN, a
multicenter brain imaging study of healthy adolescents in 8 European sites in Germany
(Mannheim, Dresden, Berlin, and Hamburg), the United Kingdom (London and Nottingham),
Ireland (Dublin), and France (Paris). Data from the second follow-up used in the present study
were acquired from January 1, 2013, to December 31, 2016, and these data were analyzed
from January 1, 2016, to March 31, 2018. Analyses were controlled for sex, site,
socioeconomic status, family history of alcohol dependency, puberty score, negative life
events, personality, cognition, and polygenic risk scores. Personality and frequency of
drunkenness were assessed at age 14 years (baseline), 16 years (first follow-up), and 19 years
(second follow-up). Structural brain imaging scans were acquired at baseline and second
follow-up time points.

MAIN OUTCOMES AND MEASURES Increases in drunkenness frequency were measured by
latent growth modeling, a voxelwise hierarchical linear model was used to observe gray
matter volume, and tensor-based morphometry was used for gray matter development. The
hypotheses were formulated before the data analyses.

RESULTS A total of 726 adolescents (mean [SD] age at baseline, 14.4 [0.38] years; 418 [58%]
female) were included. The increase in drunkenness frequency was associated with
accelerated gray matter atrophy in the left posterior temporal cortex (peak: t1,710 = –5.8;
familywise error (FWE)–corrected P = 7.2 × 10−5; cluster: 6297 voxels; P = 2.7 × 10−5), right
posterior temporal cortex (cluster: 2070 voxels; FWE-corrected P = .01), and left prefrontal
cortex (peak: t1,710 = –5.2; FWE-corrected P = 2 × 10−3; cluster: 10 624 voxels; P = 1.9 × 10−7).
According to causal bayesian network analyses, 73% of the networks showed directionality
from gray matter development to drunkenness increase as confirmed by accelerated gray
matter atrophy in late bingers compared with sober controls (n = 20 vs 60; β = 1.25; 95% CI,
−2.15 to −0.46; t1,70 = 0.3; P = .004), the association of drunkenness increase with gray
matter volume at age 14 years (β = 0.23; 95% CI, 0.01-0.46; t1,584 = 2; P = .04), the
association between gray matter atrophy and alcohol drinking units (β = −0.0033; 95% CI,
−6 × 10−3 to −5 × 10−4; t1,509 = −2.4; P = .02) and drunkenness frequency at age 23 years
(β = −0.16; 95% CI, −0.28 to −0.03; t1,533 = −2.5; P = .01), and the linear exposure-response
curve stratified by gray matter atrophy and not by increase in frequency of drunkenness.

CONCLUSIONS AND RELEVANCE This study found that gray matter development and
impulsivity were associated with increased frequency of drunkenness by sex. These results
suggest that neurotoxicity-related gray matter atrophy should be interpreted with caution.
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A lcohol intoxication (ie, drunkenness) is frequent among
adolescents and conveys greater risk for alcohol abuse.1

Although alcohol addiction has been associated with
brain atrophy,2 heavy drinking in adolescents is also associ-
ated with reduced volume and thickness of frontal and tem-
poral gray matter.3 Longitudinal structural brain studies found
greater frontocortical and temporal cortex thinning in adoles-
cents who did not drink alcohol at baseline but transitioned
into alcohol abuse during follow-up4,5 compared with adoles-
cents who drank no or low amounts of alcohol. However, this
difference was absent when the groups were matched for age
and when adolescents with no or low drinking were com-
pared with those who transitioned into moderate drinking.6

During adolescence, the development of reward
processing has been suggested to precede the development of
cognitive control,7,8 thus promoting risky decision-making,
including alcohol abuse.9 Moreover, the regions that are most
sensitive to alcohol-related atrophy are also involved in
brain networks engaged in response inhibit ion, 1 0

decision-making,11,12 and alcohol-triggered emotions.13 Atro-
phy in anterior cingulate and in superior frontal and middle
temporal gyri is a factor in alcohol abuse.14-17 Together, these
observations suggest a role for brain developmental mecha-
nisms in the onset of alcohol abuse.

Suggestions by previous studies that heavy drinking was
associated with brain damage in adolescents were based on
nonsignificant group difference at baseline and significant
group difference after the onset of drinking.3-6 This exclusive
reliance on time precedence ignores the dynamic nature of
brain development that begins even before birth18 and might
be associated with alcohol-related developmental trajecto-
ries that are established before the onset of drinking. Instead,
causality may be inferred from observational studies using cor-
roborative evidence, including but not restricted to
temporality.19 Furthermore, studies did not report behav-
ioral changes, such as in personality during adolescence, which
are known to be factors in alcohol abuse.20

Thus, the directionality of the association between brain
development and frequency of drunkenness remains un-
known to date. Specifically, is alcohol abuse associated with
changes in brain structure in adolescents and young adults, or
is there a trajectory of brain development that is a contribut-
ing factor in behavior, which may put certain adolescents at
greater risk of alcohol abuse?

In this cohort study, we adopted 3 complementary ap-
proaches to investigate the directionality of the association
between gray matter development and the increase in drunk-
enness frequency. The first approach was causal bayesian net-
work (CBN), which belongs to probabilistic reasoning and pro-
vides graphic representations of network conditional
dependencies.21 Causal bayesian network addresses the ques-
tions of directionality, uncertainty, and complexity in a set of
random, interrelated variables22 and is used in various
fields.23-25 Reliable application of CBN requires a multidimen-
sional assessment of interrelated features that possibly medi-
ate the association between the brain and frequency of drunk-
enness, including sociodemographic status, genetics,
cognition, behaviors, and personality. The second approach

was temporality analyses in 3 different samples of alcohol con-
sumers. The third approach was exploration of the exposure-
response curves. The full procedure is detailed in the eMethods
and eAppendix in the Supplement. The analyses workflow and
participant flowchart are shown in eFigures 1 and 2 in the
Supplement.

Methods
Participants
The present cohort study analyzed participants enrolled in
IMAGEN, a prospective, multicenter brain imaging study.26

Healthy adolescents were recruited at age 14 years from schools
around 8 sites in Germany (Mannheim, Dresden, Berlin, and
Hamburg), the United Kingdom (London and Nottingham), Ire-
land (Dublin), and France (Paris). Data from the second fol-
low-up used in the present study were acquired from January
1, 2013, to December 31, 2016, and were analyzed from Janu-
ary 1, 2016, to March 31, 2018. Exclusion criteria are detailed
in the eMethods in the Supplement. Participants’ alcohol, can-
nabis, and tobacco consumption and personality features were
assessed at ages 14 years (baseline), 16 years (first follow-up),
19 years (second follow-up), and 23 years (third follow-up),
thereby reducing the confounding factor of age. Structural brain
imaging and cognitive measures were acquired at baseline and
second follow-up. Written informed consent was obtained from
all participants. This study was approved by the institutional
ethics committee of King’s College London, University of Not-
tingham, Trinity College Dublin, University of Heidelberg,
Technische Universität Dresden, Commissariat à l'Energie At-
omique et aux Energies Alternatives, and University Medical
Center at the University of Hamburg in accordance with the
Declaration of Helsinki.27 The study followed the Strengthen-
ing the Reporting of Observational Studies in Epidemiology
(STROBE) reporting guideline.

Main Outcomes and Measures
Frequency of drunkenness was measured with the following
question on the European School Survey Project on Alcohol
and Other Drugs: How many times did you get drunk in the

Key Points
Question What is the directionality of the association between
the increased frequency of drunkenness and gray matter
development during adolescence?

Findings In this cohort study of 726 adolescents enrolled in the
IMAGEN European cohort, the 3 complementary approaches used
(causal bayesian networks, temporality analyses, and exploration
of exposure-response curves) suggested that accelerated gray
matter atrophy in the frontal and posterior temporal cortices was
associated with an increased risk for drunkenness.

Meaning Findings from this study suggest that the neurotoxicity
interpretation of the drinking-related acceleration of gray matter
atrophy should be applied with caution.
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last 12 months (intoxicated from drinking alcoholic bever-
ages, for example staggering when walking, not being able to
speak properly, throwing up, or not remembering what hap-
pened)? The mean value of each response category was used
for analyses (eg, a value of 3 on the European School Survey
Project on Alcohol and Other Drugs referred to 3 to 5 episodes
of drunkenness, yielding a score of 4). The increase in drunk-
enness frequency estimated by latent growth modeling was
quantitative and normally distributed.

After the quality control procedure, 1938 (969 × 2) scans
were preprocessed using the SPM-12b longitudinal pairwise tool
(Functional Imaging Laboratory Methods Group). The mid-
point within-participant templates were segmented with the
VBM-8 toolbox (Christian Gaser, University of Jena) to avoid
using adult tissue probability maps.28 A between-participant
template was generated with the diffeomorphic anatomical
registration through exponentiated lie (DARTEL) algebra.29

SPM-12b and SPM8-5236 (VBM8) were run on MATLAB, ver-
sion 7.14.0 (The MathWorks Inc).

Confounding factors (socioeconomic status, puberty score,
negative life events, and family history of alcohol depen-
dency) were controlled for (eFigure 1 and eMethods in the
Supplement). A polygenic risk score (PRS) for alcohol
consumption30 was required to meet the CBN assumptions to
reduce the risk of identifying a spurious direct link. Cogni-
tion (working memory, decision-making, and response inhi-
bition) and behavior (delay discounting, passive avoidance
learning, and personality) variables are detailed in the
eMethods in the Supplement. Alcohol drinking units (at age
23 years) were acquired using the timeline follow-back method.
Body mass index was not controlled for (eMethods in the
Supplement). Missing values were imputed using multiple
imputation.31

Statistical Analysis
Associations between quantitative variables were tested using
hierarchical linear models, a 1-level random intercept for site
and sex with lmerTest, version 3.1-0 (Per Bruun Brockhoff).
All P values were Bonferroni corrected (eTable 1 in the
Supplement). Two-sided P < .05 was considered statistically
significant.

Increases in drunkenness frequency and in personality
changes were estimated with latent growth modeling. Mplus
(Muthén & Muthén) provided the slope (ie, the increase) and
the intercept (ie, drunkenness frequency at age 14 years, given
the frequency at each time point) for each participant. Miss-
ing values were estimated using maximum likelihood from all
of the data available32 under the missing-completely-at-
random assumption (Little MCAR test: χ2

1,290 = 286; P = .60).
Causal bayesian networks, following the Bayes theorem,

modeled the posterior conditional probability of a conse-
quence after observation of the distribution of the probabil-
ity of new previous evidences in an iterative process. This ap-
proach is suited to modeling the directionality between
variables acquired at the same time and to providing proba-
bilistic dependencies in a directed acyclic graph.21 In addi-
tion, given a set of variables, CBN can be estimated in a data-
driven approach. Each network corresponds to a goodness of

fit to the observed data score (bayesian gaussian equivalent).
The procedure of “hill climbing” adds, deletes, and reverses
arcs in the current directed acyclic graph at a time until the
bayesian gaussian equivalent no longer improves.33(p19-20)

We reported only the edges replicated in more than 90%
of the 10 000 bootstrapped CBNs,33 and their directionality was
the dominant direction (>50% of the bootstrapped CBNs24,33).
Increases in drunkenness frequency between ages 14 and 19
years, drunkenness frequency at age 14 years, gray matter de-
velopment between ages 14 and 19 years (first principal com-
ponent), gray matter volume at age 14 years (first principal com-
ponent of the same clusters), and PRS were considered. All CBN
analyses used bnlearn.33

We considered individuals with minimal experiences with
alcohol, tobacco, and cannabis use until they were 16 years of
age (117 had a maximum of 2 occasions of drinking alcohol in
their lifetime16 from the initial sample of 726 participants). We
compared gray matter development (first principal compo-
nent) among the late drinkers (ie, for 20 participants, epi-
sodes of drunkenness occurred during mainly the last month
before the scans at 19 years of age; for 60 participants in the
sober control group, 0 lifetime drunkenness episodes
occurred).

We tested whether gray matter volume among the 3 clus-
ters (first principal component) at age 14 years was associated
with increased drunkenness frequency after age 14 to 19 years
in a selected subsample of participants without any episode
of drunkenness the year before age 14 years (n = 604).

We tested whether gray matter atrophy (first principal com-
ponent) was associated with frequency of drunkenness
(n = 594) and alcohol drinking units at age 23 years (n = 532).
We used the increase in binge drinking (ie, 5 drinks in a row)
to control for previous alcohol intoxication.

We stratified effect sizes according to site by sex. We ex-
plored the exposure-response curves19 (n = 726) by ranking the
strata according to increasing gray matter atrophy and increas-
ing drunkenness frequency.

Results
In total, 2216 healthy adolescents were recruited into the IMA-
GEN cohort. The present study included 726 (33%) of these par-
ticipants with good-quality data (Table 1; eFigure 2 in the
Supplement). Among the 726 participants, the mean (SD) age
at baseline was 14.4 (0.38) years, 418 (58%) were female, and
all were white. One hundred and two individuals (14%) had at
least 1 drunkenness episode.

Association With Site, Sex, Impulsivity,
and Accelerated Gray Matter Atrophy
Drunkenness significantly increased over time (estimated
SE = 8.1; P < .001) (eFigure 3 in the Supplement). Significant
differences were found between sites (analysis of variance
F7,718 = 12.4; P = 4.8 × 10−15), with higher increases in drunk-
enness frequency in England and Ireland (London, Notting-
ham, and Dublin) compared with the continental sites. The
mean increase in drunkenness frequency was greater in male
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Table 1. Variables Description Within the Samplea

Variable Baseline Follow-up 1 Follow-up 2
Age, y 14.4 (0.38) [12.9 to 15.7] 16.5 (0.56) [15 to

18.8]
18.8 (0.6) [17.1 to 21.1]

Sex, No. (%)

Female 418 (58) ND ND

Male 308 (42) ND ND

Site proportion, No. (%)

London 120 (17) ND ND

Nottingham 138 (19) ND ND

Dublin 48 (7) ND ND

Berlin 72 (10) ND ND

Hamburg 82 (11) ND ND

Mannheim 92 (13) ND ND

Paris 66 (9) ND ND

Dresden 108 (15) ND ND

ESPAD

Frequency of drunkenness 0.5 (1.8) [0 to 29.5] 4.2 (8.7) [0 to 41] 9.7 (12.5) [0 to 41]

Tobacco 0.16 (1.4) [0 to 21] 0.8 (2.7) [0 to 21] 1.6 (4) [0 to 21]

Cannabis 0.26 (2.4) [0 to 41] 2.6 (8.3) [0 to 41] 5.1 (11.7) [0 to 41]

LEQ

Negative life events 6.4 (2.8) [0 to 16] 5.9 (2.7) [0 to 17] 3.6 (2.2) [0 to 14]

SURPS

Impulsivity 2.4 (0.4) [1.4 to 4] 2.2 (0.4) [1 to 3.4] 2.1 (0.4) [1 to 3.4]

Sensation 2.6 (0.5) [1 to 4] 2.7 (0.5) [1.2 to 4] 2.7 (0.5) [1 to 4]

Anxiety sensitivity 2.3 (0.4) [1 to 3.8] 2.3 (0.5) [1 to 4] 2.4 (0.5) [1 to 4]

Negative thinking 1.9 (0.4) [1 to 3.4] 1.8 (0.4) [1 to 3.6] 1.9 (0.4) [1 to 4]

NEO PI

Neuroticism 23.13 (7.5) [4 to 45] 22.57 (5.9) [1 to 44] 20.8 (8.2) [1 to 47]

Extraversion 29.7 (5.9) [10 to 45] 29.2 (5.9) [10 to 45] 29.4 (5.9) [11 to 45]

Openness 26.7 (5.7) [11 to 45] 27.7 (5.9) [8 to 48] 28.9 (6.4) [12 to 45]

Agreeableness 29.6 (5.1) [6 to 44] 30.2 (5.3) [11 to 45] 32.3 (5.5) [9 to 46]

Conscientiousness 27.9 (6.6) [8 to 48] 28.6 (7) [9 to 47] 30.2 (7.2) [4 to 48]

CGT

Deliberation time, ms 2245.55 (7194.52)
[736.51 to 181 363.1]

ND 1626.21 (699.30) [734.5 to
12 682.45]

Risk taking 0.52 (0.14) [0.05 to 0.89] ND 0.52 (0.12) [0.13 to 0.86]

Delay aversion 0.23 (0.14) [−0.7 to 0.77] ND 0.20 (0.15) [−0.13 to 0.83]

Quality of decision-making 0.94 (0.08) [0.45 to 1] ND 0.96 (0.06) [0.55 to 1]

Overall bet 0.48 (0.13) [0.05 to 0.83] ND 0.48 (0.11) [0.14 to 0.83]

Risk adjustment 1.65 (0.96) [−0.6 to 4.6] ND 1.98 (0.95) [−0.3 to 4.78]

Pattern recognition memory,
No. of correct trials

95.3 (7.6) [41.7 to 100] ND 95.9 (7.1) [54 to 100]

Rapid visual processing 0.9 (0.05) [0.7 to 1] ND 0.93 (0.04) [0 to 1]

Spatial working memory

Between errors 18.6 (13) [0 to 63] ND 11.1 (12.2) [0 to 74]

Strategy 31 (5.4) [18 to 43] ND 27.7 (6.2) [18 to 44]

Affective go or no-go mean
correct latency, ms

Negative 490 (111.8) [222 to 888] ND 513.3 (89.5) [215 to 964]

Positive 473.5 (107.8) [196.9 to
828.9]

ND 497.5 (87.8) [239 to 903]

Affective go or no-go total
omissions, No.

Negative 11.4 (7.9) [0 to 36] ND 6.2 (5.5) [0 to 36]

Positive 13.3 (7.3) [0 to 36] ND 8 (5.4) [0 to 36]

Delay discounting κ value 0.023 (0.03) [0 to 0.25] ND 0.024 (0.03) [0 to 0.24]

Abbreviations: CGT, Cambridge
Guessing Task (modified version of
the Cambridge Gambling Task; CGT
variables detailed in the eMethods in
the Supplement); ESPAD, European
School Survey Project on Alcohol and
Other Drugs; LEQ, Life Events
Questionnaire; ND, no data acquired
at the corresponding time point; NEO
PI, Neuroticism, Extraversion,
Openness, Agreeableness, and
Conscientiousness Personality
Inventory; SURPS, Substance Use
Risk Profile Scale (this scale measured
sensation seeking, impulsivity,
anxiety sensitivity, and negative
thinking).
a All values given as mean (SD)

[range] unless otherwise indicated.
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compared with female participants (0.52 vs 0.34; 95% CI, 12%-
24%; t1,724 = 5.9; P = 3.6 × 10−9) (Figure 1A). Among possible
personality,20 cognition,34 and behavioral35 confounding fac-
tors, only the increases in openness (β = 0.10; 95% CI, 0.05-
0.16; t1,690 = 4; P = 2.4 × 10−3) and in impulsivity (β = 1.06; 95%
CI, 0.57-1.9; t1,707 = 3.6; Bonferroni-corrected [25 models]
P = 6.7 × 10−3) were associated with an increase in drunken-
ness frequency (Figure 1B and C; eTable 2 in the Supple-
ment). Polygenic risk score was not associated with an in-
crease in drunkenness frequency (β = 3209; 95% CI, −2769 to
9187; t1,699 = 1; P = .30).

We found significant atrophy in the inferior frontal and
temporal cortices independent of drunkenness (n = 907)
(Figure 2A and B; eTables 7, 8, and 9 in the Supplement). An
increase in drunkenness frequency was associated with ac-
celerated gray matter atrophy in the left posterior temporal cor-
tex (peak: t1,710 = –5.8; familywise error (FWE)–corrected
P = 7.2 × 10−5; cluster: 6297 voxels; P = 2.7 × 10−5), in the right
posterior temporal cortex (cluster: 2070 voxels; FWE-
corrected P = .01), and in the left prefrontal cortex (peak:
t1,710 = –5.2; FWE-corrected P = 2 × 10−3; cluster: 10 624 voxels;
P = 1.9 × 10−7), extending to the left anterior insula and the an-
terior cingulate (Figure 2C and Table 2). These 3 clusters were
also observed using a voxelwise hierarchical linear model (eFig-
ure 4 and eTable 3 in the Supplement) and were confirmed with
the increase of binge drinking (5 drinks in a row) and the first
principal component of the 3 clusters (β = −0.76; 95%
CI = −0.97 to −0.55; t1,701 = −7.1; P = 3.5 × 10−12) (eResults and
eFigure 4 in the Supplement).

Directionality Analyses
Bootstrapping revealed that 100% of the CBNs showed an as-
sociation between gray matter atrophy and an increase in
drunkenness frequency, of which 73% showed a direction from
gray matter development to increased drunkenness fre-
quency (Figure 3A). We found increased gray matter atrophy
(between ages 14 and 19 years) in the late bingers compared
with sober controls (n = 20 vs 60; β = 1.25; 95% CI, −2.15 to

−0.46; t1,70 = 0.3; P = .004). Gray matter volume at age 14 years
among nondrinkers was associated with a future increase in
drunkenness frequency between ages 14 and 19 years (n = 604;
β = 0.23; 95% CI, 0.01-0.46; t1,584 = 2; P = .04). Conversely,
drunkenness frequency at age 14 years was not associated with
gray matter development between ages 14 and 19 years in the
whole sample (n = 726; β = 0.03; 95% CI, –0.09 to 0.14;
t1,700 = 0.4; P = .60) or in the sample of alcohol drinkers at age
14 years (n = 122; β = −1 × 10−3; 95% CI, −0.22 to 0.22; t1,106 = –
0.01; P > .99). Gray matter development was negatively asso-
ciated with frequency of drunkenness (n = 594; β = –0.16; 95%
CI, –0.28 to –0.03; t1,533 = –2.5; P = .01) and alcohol drinking
units at age 23 years (n = 532; β = −0.0033; 95% CI, −6 × 10−3

to −5 × 10−4; t1,509 = −2.4; P = .02).
Ranking the strata according to gray matter atrophy re-

vealed a linear exposure-relation curve, whereas using the fre-
quency of drunkenness to rank the groups did not (eFigures 5
and 6 in the Supplement). Individuals with the fastest gray mat-
ter atrophy (female participants from London) had a greater
increase in drunkenness frequency compared with individu-
als with the slowest atrophy (male participants from Paris)
(β = 0.28; 95% CI, 0.11-0.45; t1,98 = 3.3; P = .001). Stratifying
the sample by site and sex confirmed greater effect sizes in fe-
male participants and in Dresden (continent) (eTables 4 and 5
and eFigures 7 and 8 in the Supplement).

Impulsivity and Gray Matter Development
as Independent Sex-Specific Pathways
We found no significant association between gray matter at-
rophy and increase in impulsivity (β = 0.7; 95% CI, −1.3 to 2.8;
t1,707 = 0.7; P = .50). However, impulsivity at age 14 years cor-
related strongly with drunkenness frequency at age 14 years
(β = 0.6; 95% CI, 0.3-0.9; t1,712 = 4.1; P = 3.9 × 10−5) and in-
crease in drunkenness frequency between ages 14 and 19 years
(β = 0.3; 95% CI, 0.2-0.5; t1,708 = 5; P = 6.7 × 10−7), particu-
larly among male participants (β = 0.6; 95% CI, 0.4-0.9;
t1,293 = 5.4; P = 1 × 10−7) but not female participants (β = 0.1;
95% CI, −0.03 to 0.3; t1,405 = 1.5; P = .10). An increase in open-

Figure 1. Increase in Drunkenness Among 726 Participants
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ness between ages 14 and 19 years was not associated with gray
matter atrophy (β = −0.1; 95% CI, –0.3 to 0.06; t1,695 = –1.3;
P = .20). Openness at age 14 years was not associated with
drunkenness at this age (β = −0.005; 95% CI, –0.02 to 0.01;
t1,613 = –0.7; P = .40) or with an increase in drunkenness be-
tween ages 14 and 19 years (β = 0.008; 95% CI, 0.001-0.01;
t1,709 = 2.4; Bonferroni-corrected P = .07).

Post hoc CBN analyses tested for the directionality of the
association between impulsivity and the increase in drunk-
enness frequency and PRS (5 variables). Impulsivity at age 14
years and increase in drunkenness frequency were associ-
ated with 92% of the networks, suggesting that impulsive be-

havior that was already established at age 14 years was asso-
ciated with increased drunkenness frequency. Impulsivity and
frequency of drunkenness at age 14 years were associated in
91% of the networks, but only 50% of the networks found di-
rectionality from impulsivity to drunkenness frequency at this
age (Figure 3B).

A third CBN analysis evaluated whether the 2 pathways
(ie, related to gray matter or impulsivity) were independent
from each other (7 variables). We found stable directionality
from gray matter development (76%) predominantly among
female participants (93%) and from impulsivity at age 14
years to increase in drunkenness (94%) predominantly

Figure 2. Gray Matter Development Among Participants
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first 12 regions (on the left of the graph) show the most significant volume
reduction (negative values), whereas the remaining 12 regions (on the right of
the graph) show the most significant volume increase (positive values). C, The
increase in frequency of drunkenness episodes between ages 14 and 19 years

was the variable of interest. Confounding factors were site, sex, latent baseline
drinking intercept factor, tobacco use, cannabis use,36 negative score on the
Life Events Questionnaire,37 total intracranial volume difference, socioeconomic
status, family history, and sex-centered puberty development score. Mass
univariate voxelwise analyses were used.
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among male participants (99%) (Figure 3C-E). Constraining
the directionality from the increase of drunkenness toward
gray matter development yielded worse model fit indices
(eTable 6 in the Supplement). These results remained when
the imputed PRS missing values were used (eFigure 9 in the
Supplement).

Discussion
Using complementary approaches to determine probable di-
rectionality, we found that the accelerated gray matter atro-
phy in frontal and temporal regions was associated with in-
creased frequency of alcohol intoxication in adolescents.
Although this brain development pathway was found in both
sexes, it was more prominent in female participants. In male
participants, we found a second and independent pathway in
which increased impulsivity was associated with increased
drunkenness frequency.

The finding that accelerated frontal atrophy was associ-
ated with frequency of drunkenness corroborates previous
findings.4,6 However, Pfefferbaum et al6 did not find acceler-
ated temporal atrophy, possibly owing to the cortex parcella-
tion, which might have calculated a different pattern
of temporal cortex development.35 Moreover, age had a lim-
ited confounding effect in our sample (eResults in the
Supplement).

Temporal atrophy was greater during ages 14 to 19
years, whereas the age range of 12 to 21 years6 might have
influenced temporal atrophy variance. For example, Squeg-
lia et al34 found alcohol abuse–related accelerated atrophy
in the temporal cortex using a similar approach as in the
present study but with a younger sample at baseline.
Results of the present study are consistent with those of a
recent meta-analysis in substance dependency, which iden-
tified the shared pattern of gray matter atrophy (within the
bilateral middle temporal gyrus, the left fusiform gyrus, and
the right medial orbitofrontal cortex) across various sub-
stance use, suggesting that atrophy may underlie substance
dependency in general rather than specific neurotoxicity.38

Prenatal exposure to alcohol has been suggested as a factor
in gray matter development.39,40 However, we could not
find any significant association between amount of alcohol
intake during pregnancy and gray matter development (eRe-
sults in the Supplement).

Two important conditions for the successful application
of CBN are controlling for potential confounding factors and
verifying the results using long-term data.22,33 Unmeasured
factors might confound the association between gray matter
development and increase in drunkenness frequency. In the
present study, we integrated various confounding factors,
including demographic, behavioral, and genetic factors rel-
evant to alcohol use. Thus, the comprehensive and multido-
main assessment of possible confounding factors of
increased drunkenness16 meets the assumptions for using
CBN. Meanwhile, the longitudinal design of the study sup-
ports gray matter atrophy preceding the onset of drunken-
ness episodes in different temporal patterns of alcohol use.
First, baseline gray matter volume was significantly associ-
ated with future frequency of drunkenness, corroborating
previous results that gray matter development was associ-
ated with alcohol abuse.14-17,41 Second, late drinkers had
accelerated atrophy. Although accelerated atrophy among
late drinkers may not be induced by drunkenness within the
last month before the assessment, we cannot formally rule
out this possibility. Third, the cerebral pattern related to
adolescent drunkenness is also associated with alcohol
intake and drunkenness frequency at adulthood. This asso-
ciation remains significant, accounting for an increase in
binge drinking that may indicate adult alcohol use42 and
arguing for time precedence from gray matter development
during adolescence to adult alcohol intake.

Plotting the effect sizes according to sex-by-site groups
ranked by higher rate of gray matter atrophy revealed a linear
trend of exposure-response curve, and the group with the fast-
est rate of gray matter atrophy had a greater increase in drunk-
enness frequency compared with the group with the slowest
rate of gray matter atrophy. Conversely, ranking the groups ac-
cording to drunkenness frequency did not provide the typi-
cal curve, suggesting that alcohol is toxic.43-47

Table 2. Clusters and Corresponding Features Associating Gray Matter Development
and Increase in Frequency of Drunkenness (N = 726 Participants)

Cluster
Cluster Size
(Voxels) AAL Structures

Peak Location MNI
Coordinates

P Value
for Cluster Level
(FWE
Corrected)a,b t Value Brodmann Area

P Value
for Peak Level
(FWE Corrected)a

Left prefrontal

10 624

Lateral frontal gyrus (L) −42, 34, −12

1.9 × 10−7

5.2 L BA 47 2 × 10−3

Middle frontal gyrus (L) −44, 36, 0 4.96 L BA 45 5 × 10−3

Inferior frontal gyrus (L) −10, 34, −15 4.5 L BA 11 4 × 10−2

Left temporal
6297

Inferior temporal gyrus (L) +
middle temporal gyrus (L)

−62, −21, −24
2.7 × 10−5

5.85 BA 20 + BA 21 7.2 × 10−5

Fusiform gyrus (L) −52, −56, 0 5.26 BA 37 1 × 10−3

Right temporal 2070 Middle temporal gyrus (R) 68, −26, −22 1 × 10−2 NA No voxels
survived the FWE
correction

NA

Abbreviations: AAL, automatic anatomic label; BA, Brodmann area; FWE,
familywise error; L, left; MNI, Montreal Neurological Institute; NA, not
applicable; R, right.

a All P values were FWE corrected.
b P value at the peak level set at P = .001 uncorrected.
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Limitations
This study has some limitations. Causality can be proven only
in randomized clinical trials, which are not feasible for
ethical reasons. Therefore, compelling evidence from large,

longitudinal, and well-characterized observational studies are
the best evidence available according to the Hill criteria for in-
ferring causality.19 The possible limitations of this approach
are the unmeasured confounders that obscure true causality

Figure 3. Causal Bayesian Networks
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Bayesian gaussian equivalent scores were −4610.7 (A), −4570.6 (B), −6407.7
(C), −3685.6 (D), and −2738.7 (E). The confounding factors (sex, site, puberty
development score, negative life events, family history of alcoholism, and
socioeconomic status) were modeled by regressing out their corresponding
variance from each variable of interest (ie, node). Minus (–) or plus (+) sign

indicates either negative or positive associations between the nodes; D
indicates direction or proportion of networks (10 000 bootstraps) showing a
direction from one node to another; GM, gray matter; PRS, polygenic risk score;
and S, strength or the proportion of networks (10 000 bootstraps) with a
statistically significant association.
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despite controlling for numerous intervening variables. Short
of conducting a randomized clinical trial, we cannot rule out
the possibility of the simultaneous occurrence of gray matter
atrophy and increase in alcohol intoxication without any cau-
sation. For example, recent genetic epidemiologic investiga-
tions suggested that the presumed protective effect of mod-
erate alcohol intake on stroke might be noncausal.48 Moreover,
PRS score and the increase in drunkenness were not signifi-
cantly associated, suggesting that the genetic contribution of
drunkenness frequency during adolescence was not fully
controlled for.

Although the temporal analyses were performed on 3 dif-
ferent patterns of alcohol consumption with the limited con-
founding factor of previous alcohol intake, the current de-
sign prevented the unambiguous determination that gray
matter development occurred before the increase in drunk-
enness frequency. We believe that cohorts with multiple time
points and individuals at high risk for alcohol dependency are
needed to increase the proportion of heavy drinkers in future
studies. Some CBNs can have equivalent classes, but the

increase in drunkenness frequency is part of a V structure net-
work, which renders their identification more robust (eAp-
pendix in the Supplement).

We used voxel-based morphometry to obtain gray matter
volume and tensor-based morphometry to obtain gray mat-
ter development. Although widely used, these frameworks pro-
vided different cerebral features, and strong conclusions re-
quire replication.

Conclusions
This study, which included a large, long-term, and well-
characterized cohort of healthy adolescents in Europe, found
that gray matter development and impulsivity were associ-
ated with increased frequency of drunkenness by sex. These
findings add to the evidence suggesting a cerebral predispo-
sition to alcohol abuse. We believe the results of this study call
for a more cautious interpretation of neurotoxicity-related gray
matter atrophy.
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