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Genome-wide association studies (GWASs) have discovered numerous risk genes for Alzheimer’s disease (AD), but how these genes
confer AD risk is challenging to decipher. To efficiently transform genetic associations into drug targets for AD, we employed an
integrative analytical pipeline using proteomes in the brain and blood by systematically applying proteome-wide association study
(PWAS), Mendelian randomization (MR) and Bayesian colocalization. Collectively, we identified the brain protein abundance of 7
genes (ACE, ICA1L, TOM1L2, SNX32, EPHX2, CTSH, and RTFDC1) are causal in AD (P < 0.05/proteins identified for PWAS and MR; PPH4
>80% for Bayesian colocalization). The proteins encoded by these genes were mainly expressed on the surface of glutamatergic
neurons and astrocytes. Of them, ACE with its protein abundance was also identified in significant association with AD on the
blood-based studies and showed significance at the transcriptomic level. SNX32 was also found to be associated with AD at the
blood transcriptomic level. Collectively, our current study results on genetic, proteomic, and transcriptomic approaches has
identified compelling genes, which may provide important leads to design future functional studies and potential drug targets
for AD.
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INTRODUCTION
Alzheimer’s disease (AD) is a worldwide public health threat,
currently affecting 6.2 million Americans nowadays; the number is
expected to grow to 13.8 million by 2060 [1]. However, there is no
effective disease-modifying treatment for AD [2]. Over the past
decade, the widespread application of large-scale genome-wide
association studies (GWASs) has drastically advanced the dis-
covery of genetic variants associated with AD [3, 4]. Nevertheless,
it is still challenging to decipher the underlying biological
mechanisms responsible for the vast majority of these genetic
effects, which has hindered translating these genetic findings to
drug development of AD by targeting these candidate genes [5].
Before understanding the genetic architecture of a disease, we

first need to characterize the complex profiles and associated
genetic architecture of downstream proteins [6]. In addition to
GWAS, proteome-wide association studies (PWASs) have been
recently developed that can establish associations between
proteome abundance and phenotypic variations [7], helping
providing a bridge that can translate the discovery of genetic
architectures and elucidate the mechanisms of downstream
proteins associated with human pathophysiology [6]. Publicly
accessible GWAS summary statistics provide a rich resource for
integrative analyses of disease pathogeneses: e.g., Mendelian
randomization (MR) and Bayesian colocalization. MR uses genetic

variants to estimate the effects of an exposure on an outcome, on
the presumption that alleles are randomly allocated to gametes,
removing the effects of confounding bias and reverse causation
[8]. Statistical colocalization explores whether two associated
signals share common causal variants [9]. Recently, frameworks of
integrative analysis that combine MR with colocalization have
been widely deployed to identify biological mediators modulating
genes and clinical outcomes [10, 11]. Moreover, protein levels and
functions, in combination with gene expression and epigenetic
regulation, vary greatly dependent on tissue types [12]. While
investigating the brain tissues that is most closely related with
cerebral dysfunction is the most direct approach, it is often
difficult to sample, and other body tissues, such as blood, are more
tractable for individual patient diagnosis and treatment.
Accordingly, we sought to discover promising drug targets for

AD by combining high-throughput proteomics in the brain and
blood with genetic data to determine the genomic architecture-
associated protein levels in AD. We systematically link protein
biomarkers to AD by taking a five-step approach. First, we
leveraged protein quantitative trait locus (pQTL) data derived from
brain tissue and findings from two large-scale AD GWASs to
conduct a PWAS analysis aimed at identifying the candidate
protein biomarkers (Step 1). Second, we integrated these data
using a MR framework, which harnesses genetic colocalization to
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highlight genes and AD that are influenced by a shared causal
variant (Step 2). Third, by leveraging gene-expression data, we
identified the significant genes driving GWAS signals at the
transcriptional level (Step 3). Fourth, a specificity analysis was
conducted to detect the cell type that targeted genes express on
the highest levels (Step 4). Last, we verified the findings by
applying them to the proteomic data derived from blood serum to
assess the consistency between the two tissues (Step 5). Figure 1
summarizes the overall analysis pipeline applied in this study.

MATERIALS AND METHODS
Brain-derived pQTL and expression quantitative trait locus
(eQTL) data
Proteomes and coupled genotyping data were derived from the
dorsolateral prefrontal cortex (dPFC) of postmortem brain samples
donated by 400 participants of European ancestry from the Religious
Orders Study/Memory and Aging Project (ROS/MAP) [13]. Proteomic
sequencing was performed using isobaric tandem mass tag peptide
labeling; peptides were analyzed by liquid chromatography coupled to
mass spectrometry (MS). Proteome Discoverer suite v.2.3 (Thermo Fisher
Scientific) and tandem MS spectra were used to search against the
canonical UniProtKB human proteome database containing 20,338 total
sequences to assign peptide spectral matches. Genotyping was obtained
from either whole-genome sequencing or genome-wide genotyping by
either the Illumina OmniQuad Express or Affymetrix GeneChip 6.0
platforms [14]. A total of 376 subjects across 8356 proteins with both
proteomic and genetic data passed the quality control for the PWAS.
Transcriptomes data were profiled from postmortem brain samples

donated by 576 individuals recruited by the ROS/MAP. These transcrip-
tomes were profiled mainly from the dPFC. Picard v.1.83 was used to
convert BAM files to FASTQ format; STAR v.2.5.1b was used to align reads
to the GRCh38 reference genome and compute gene counts for each
sample. Quality control process included removing genes with <1 count
per million in at least 50% of the samples and genes with missing gene
length and percentage guanine–cytosine content and removing outlier
samples. We regressed out effects of batch, sex, postmortem interval, age
at death, brain region, and final diagnosis of cognitive status and then
estimated the messenger RNA (mRNA) weights. Genome-wide genotyping
was generated as described above.

Blood proteomes and eQTL data
Serum protein biomarkers were derived from the largest GWAS analyses
for which genome-wide summary statistics were publicly available (AGES
Reykjavik project) [15]. The study samples consisted of 5457 predominantly
European individuals aged 66–96 years. Serum levels of 4137 human
proteins, targeted by 4782 Slow Off-Rate Modified Aptamers (SOMAmers),
were determined at SomaLogic Inc. (Boulder, US).
We next obtained whole-blood eQTL data from the GTEx version 8

database of 948 donors from https://gtexportal.org/home/datasets, which
is used for the study of human gene expression and their associations with
genetic variations [16]. Gene expression in these samples was obtained
using paired-end RNA-seq (Illumina TruSeq; Illumina Inc.) and genotype
data from whole-genome sequencing. Complete descriptions of the donor
enrollment, consent process, bio-specimen procurement methods, sample
fixation, and histo-pathological review procedures are available at the GTEx
official website (https://www.gtexportal.org).

AD GWAS data
The main analysis utilized the most recent and largest AD GWAS [17]. It is
composed of a GWAS from the UK Biobank (UKB) for family history of AD
(N= 53,042 cases, 355,900 controls) and the Kunkle et al. stage 1 GWAS
(N= 21,982 cases, 41,944 controls), which was obtained from the
International Genomics of Alzheimer’s Project (IGAP) GWAS Stage 1 result.
The Kunkle et al. stage 1 GWAS is composed of datasets from the
Alzheimer Disease Genetics Consortium, Cohorts for Heart and Aging
Research in Genomic Epidemiology Consortium, the European Alzheimer’s
Disease Initiative, and Genetic and Environmental Risk in AD/Defining
Genetic, Polygenic and Environmental Risk for Alzheimer’s Disease
Consortium. AD cases were all autopsy-confirmed or clinically confirmed
using the published criteria (Supplementary Table 1).

We also utilized the GWAS summary statistics from another large AD
GWAS [3]. This study included 71,880 AD cases and AD-by-proxy cases
based on parental diagnoses (mean age of onset: 64.3 years) and 383,378
controls (mean age at last contact: 58.2 years) of European ancestry from 4
consortia, including the Alzheimer’s Disease Working Group of the
Psychiatric Genomics Consortium, IGAP, Alzheimer’s Disease Sequencing
Project and UKB (Supplementary Table 1).

Statistical analysis
Proteome-wide association study. Genome-wide genotyping was dis-
persed into a linkage disequilibrium (LD) reference panel of ~1,190,321
single-nucleotide polymorphisms (SNPs) to minimize the influence of LD
on the estimated test statistics [18]. The SNP-based heritability for each

Fig. 1 The analytical pipeline for identifying genetic targets of AD
using brain- and blood-based proteomics. First, we leveraged pQTL
data derived from the brain tissue and findings from two large-scale
AD GWASs to conduct a PWAS analysis (Step 1). Second, we
integrated the above data using a MR framework, which harnesses
genetic colocalization to highlight genes and AD that are influenced
by a shared causal variant (Step 2). Third, by leveraging gene-
expression data, we identified the significant genes driving GWAS
signals on the transcriptional level (Step 3). Fourth, cell-type
specificity analysis was conducted to detect the cell type that
targeted genes express on the highest levels (Step 4). Last, we
verified the findings by applying the proteomic data derived from
blood serum to detect the consistency between the two tissues
(Step 5).
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gene was estimated using both the proteomic and genetic data. For
proteins with significant heritability (P < 0.01), we used FUSION to compute
the effect of SNPs on protein abundance using multiple predictive models,
including top1, blup, lasso, enet, and bslmm [18]. We chose the weights of
protein calculated from the most predictive model. Weights used in the
present analysis were derived from https://www.synapse.org/#!Synapse:
syn23627957. Subsequently, we used FUSION to combine the genetic
effect of AD (AD GWAS z-score) with the protein weights by calculating the
linear sum of z-score × weight for the independent SNPs at the locus to
perform the PWAS of AD. A linear regression model was applied to each
protein entry. We evaluated the significance level of association with AD as
the outcome and normalized protein abundance as the predictor. The
Benjamini–Hochberg method was used to control the false discovery rate
[19], which was estimated by the p.adjust() function in R. We also
computed a Bonferroni-corrected P value threshold.

MR analysis. MR relies on three assumptions—the genetic variants of
exposure are strongly associated with the exposure of interest, the genetic
variants of exposure are independent from confounders of the exposure-
outcome relation, and the genetic variants are only linked to the outcome
through affecting the exposure of interest [8]. SNPs included for the
analysis were strongly and independently (R2 < 0.001) predicted exposures
at genome-wide significance (5 × 10−8). The Wald ratio estimates the log
odds change in AD risk per standard deviation change in protein
biomarker relative to the risk allele for the instrumenting SNP [20]. Where
more than one SNP was available, a weighted mean of the ratio estimates
weighted by the inverse variance of the ratio estimates (inverse-variance
weighted method) was used [21]. The regression was constrained to pass
through the origin, thus leading to a zero intercept. Complementary
methods, including MR-Egger, weighted median, simple mode, and
weighted mode, were also applied. Estimates were filtered based on a
multiple testing threshold of P < 0.05/number of proteins analyzed. MR
estimates were derived using the “TwoSampleMR” package in R 3.6.0
(github.com/MRCIEU/TwoSampleMR).

Bayesian colocalization analysis. This method assesses whether two
associated signals are consistent with shared causal variant(s). Default
prior probabilities were used, including P1= 1 × 10−4, P2= 1 × 10−4,
P12= 1 × 10−5, where P1 is the probability that a given SNP is associated
with AD, P2 is the probability that a given SNP is a significant QTL, and P12
is the probability that a given SNP is both an AD result and an QTL [9]. We
extracted the summary association statistics for SNPs from the QTL dataset
and then extracted the summary association statistics for the same SNPs
from the AD GWAS. This approach has five mutually exclusive hypotheses:
(1) there is no causal SNP for either trait (H0); (2) there is one causal SNP for
trait 1 only (H1); (3) there is one causal SNP for trait 2 only (H2); (4) there
are two distinct causal SNPs, one for each trait (H3); and (5) there is a causal
SNP common to both traits (H4). Support for each of the hypotheses is
quantified by the posterior probability (PP), denoted by PPH0, PPH1, PPH2,
PPH3, and PPH4, respectively [9]. Evidence for colocalization was assessed
using the PP for hypothesis 4 (PPH4 >80%) [22, 23]. These PPs were
calculated using Bayesian “coloc.abf” function, “coloc” package in R (http://
cran.r-project.org/web/packages/coloc).

Cell-type specificity analysis. We further examined the cell type-specific
expression of the 7 genes by using human brain single-cell RNA
sequencing (RNA-seq) data profiled from the Cell Types database
(https://portal.brain-map.org/atlases-and-data/rnaseq). Individual layers
of cortex were dissected from tissues covering the middle temporal
gyrus (MTG), anterior cingulate gyrus, primary visual cortex, primary motor
cortex, primary somatosensory cortex and primary auditory cortex derived
from the human brain, and nuclei were dissociated and sorted using the
neuronal marker NeuN. Nuclei were sampled from postmortem and
neurosurgical (MTG only) donor brains and expression was profiled with
SMART-Seq v4 or 10× Genomics Chromium Single Cell 3’ v3 RNA-seq.
Specificity values of the gene expression were generated using the
CELLEX (CELL-type EXpression-specificity) [24], which is a tool for
computing cell-type Expression Specificity (ES) profiles. It employed a
“wisdom of the crowd” approach by integrating multiple ES metrics, thus
combining complementary cell-type ES profiles, to capture multiple
aspects of ES and obtain improved robustness (https://github.com/
perslab/CELLEX).

RESULTS
PWAS identifies 14 candidate genes associated with AD using
brain pQTL
We performed a PWAS by integrating AD GWAS results of 376
human brain proteomes profiled from the dPFC [25]. The PWAS
conducted in the Schwartzentruber AD GWAS [17] identified 10
genes [angiotensin-converting enzyme (ACE), epoxide hydroxylase
(EPHX2), Islet Cell Autoantigen 1 Like (ICA1L), MAP Kinase Activating
Death Domain (MADD), Platelet Activating Factor Acetylhydrolase 1b
Catalytic Subunit 2 (PAFAH1B2), Pleckstrin Homology Domain
Containing A1 (PLEKHA1), PVR Cell Adhesion Molecule (PVR), Sorting
Nexin 1 (SNX1), Syntaxin 4 (STX4), and Target Of Myb1 Like 2
Membrane Trafficking Protein (TOM1L2)] whose brain protein levels
were associated with AD at a Bonferroni-corrected P value
threshold of 3.41 × 10−5 (0.05/1468; Fig. 2A and Supplementary
Table 2). Four of these 10 proteins (ACE, EPHX2, PVR, and STX4)
were replicated in another PWAS using Jansen AD GWAS [3]
(Fig. 2B and Supplementary Table 3). Another four proteins
[Cathepsin H (CTSH), Double C2 Domain Alpha (DOC2A), Replica-
tion Termination Factor 2 Domain Containing 1 (RTFDC1), and
Sorting Nexin 32 (SNX32)] were further identified in the Jansen AD
GWAS. In summary, a total of 14 candidate genes associated with
AD were identified using brain pQTL. Detailed information can be
found in Table 1.

MR reveals 9 genes associated with AD using brain pQTL
Most of the analyzed proteins could only be instrumented using a
single SNP, thus MR estimates were mainly based on the Wald ratio
method. After corrections for multiple testing, we identified 6 protein

Fig. 2 Manhattan plots of PWAS by integrating brain pQTL and
AD GWAS. The PWAS identified ten genes whose brain protein
abundance was associated with Schwartzentruber AD GWAS (A) and
eight genes associated with Jansen AD GWAS (B). Each point
represents a single test of association between a gene and AD
ordered by genomic position on the X axis and the association
strength on the Y axis as the −log10(P) of a z-score test. The red
horizontal line reflects the significant threshold of the Bonferroni-
corrected P < 0.05/1468 (3.41 × 10−5) for Schwartzentruber AD
GWAS and P < 0.05/1476= 3.39 × 10−5 for Jansen AD GWAS.
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biomarkers that provided strong evidence of an association [P<
8.18 × 10−5 (0.05/611)] in the first AD GWAS (Table 2, Fig. 3A, and
Supplementary Table 4). Associations between lower ACE, ICA1L, and
Solute Carrier Family 20 Member 2 (SLC20A2) levels and higher AD
risk (odds ratio (OR) and 95% confidence interval (CI)= 0.551
(0.412–0.736), P= 5.76 × 10−5 for ACE; OR 95% CI= 0.379
(0.244–0.589), P= 1.57 × 10−5 for ICA1L; OR and 95% CI= 0.454
(0.311–0.662), P= 4.17 × 10−5 for SLC20A2) were identified, as well as
associations between higher Microtubule Associated Protein 1S
(MAP1S), TOM1L2, and EPHX2 levels and higher AD risk [OR and
95% CI= 2.365 (1.577–3.547), P= 3.17 × 10−5 for MAP1S; OR and 95%
CI= 3.855 (2.091–7.105), P= 1.53 × 10−5 for TOM1L2; OR and 95%
CI= 1.422 (1.294–1.563), P= 2.72 × 10−13 for EPHX2].
We then evaluated 609 protein biomarkers with AD risk in the

Jansen GWAS dataset (Table 2, Fig. 3B, and Supplementary
Table 5). Consistent positive associations were observed for EPHX2
level with AD risk (OR and 95% CI= 1.064 (1.042–1.087), P=
1.09 × 10−8). In addition, genetically determined increased levels
of CTSH and RTFDC1 increased the risk of AD [OR and 95% CI=
1.052 (1.029–1.070), P= 6.29 × 10−6 for CTSH; OR and 95% CI=
1.138 (1.073–1.208), P= 1.76×10−5 for RTFDC1], whereas SNX32
[OR and 95% CI= 0.900 (0.862–0.940), P= 2.26×10−6] decreased
the risk of AD.

Colocalization between AD risk genes and pQTL in brain
Statistical colocalization analysis reported for each gene, the
probability that the GWAS and pQTL share a causal variant,
referred to as hypothesis 4 (PPH4). This analysis identified 5 of the
6 genes that provided evidence of genetic colocalization based on
a PPH4 >80%. Results indicated that ACE, ICA1L, MAP1S, SLC20A2,
and TOM1L2 play a role in AD risk (PPH4= 96.9, 97.2, 93.2, 89.9,
and 87.6%, respectively; Table 2, Fig. 3A, and Supplementary
Table 6). All of the 4 genes (CTSH, EPHX2, RTFDC1, and SNX32) also
passed the PPH4 >80% criterion in the analysis of the Jansen
GWAS dataset (Table 2, Fig. 3B, and Supplementary Table 7).

Gene expression in brain and altered AD risk
Considering that DNA is transcribed into mRNA, which is
translated into protein, we asked whether genes with evidence
for being causal in AD at the protein level had similar evidence at
the transcriptional level by conducting MR and colocalization
analyses. ACE was associated with a negative Wald ratio (P=
8.85 × 10−8), indicating a relationship between decreased gene
expression and increased AD risk (Supplementary Tables 8 and 9).
ACE gene was also associated with AD in the shared genetic effect
between gene expression (eQTL) and AD risk (PPH4= 99.2%;

Supplementary Tables 8 and 11). Furthermore, the expression of
SNX32 in brain was associated with reduced AD risk in the Jansen
GWAS dataset (P= 3.12 × 10−6, PPH4= 99.2%; Supplementary
Tables 8, 10, and 12).

Cell-type specificity analysis in the brain
Collectively, seven genes (ACE, ICA1L, TOM1L2, SNX32, EPHX2,
CTSH, and RTFDC1) showed evidence consistent with being causal
for AD by applying the discovered brain proteomes analysis (the
right two columns in Fig. 4A, B). Using human single-cell RNA-seq
data from the Cell Types database (https://portal.brain-map.org/
atlases-and-data/rnaseq), we found cell type-specific enrichment
for expression of the seven causal genes (Supplementary Table 13).
CTSH, EPHX2, and TOM1L2 were enriched in astrocytes, whereas
ICA1L and RTFDC1 showed enrichment in glutamatergic neurons.
ACE showed enrichment in endothelial cells, and SNX32 was
enriched in glutamatergic neurons.

Six genes in blood proteomics were associated with AD risk
Applying our MR framework using serum proteomes data, 6
genetically predicted effects in the blood proteomics survived
corrections for multiple testing (P< 7.80 × 10−5, based on 641 genes;
Table 3, Fig. 3C, and Supplementary Table 14). Of these, the
concentrations of 2 proteins were positively associated with AD risk
[Apolipoprotein E (APOE), OR and 95% CI= 1.729 (1.652–1.809), P=
4.00 × 10−123; CD33 Molecule (CD33), OR and 95% CI= 1.052
(1.029–1.075), P= 4.88 × 10−6], while the other 4 were inversely
associated with AD risk [ACE, OR and 95% CI= 0.926 (0.896–0.955),
P= 1.92 × 10−6; Creatine Kinase, M-Type (CKM), OR and 95% CI=
0.713 (0.628–0.810), P= 1.98 × 10−7; Transmembrane Protein 106B
(TMEM106B), OR and 95% CI= 0.857 (0.799–0.918), P= 1.34 × 10−5;
Triggering Receptor Expressed On Myeloid Cells 2 (TREM2), OR and
95% CI= 0.560 (0.478–0.657), P= 1.05 × 10−12]. We next repeated the
analysis using the Jansen GWAS meta-analysis, which verified three
AD risk genes: ACE, APOE, and CD33 (Table 3, Fig. 3D, and
Supplementary Table 15).

Gene expression in blood and altered AD risk
A total of 26 and 15 Wald ratio effects showed evidence of MR at
the multiple comparison corrected thresholds in the two AD
GWASs, respectively (Supplementary Tables 16–18). When colo-
calization method was applied to these genes, 6 showed strong
evidence for colocalization (PPH4 >80%; Supplementary Tables 16,
19, and 20). Analysis in the Jansen GWAS found that the SNX32
gene passed the MR P-threshold with a value of 4.22 × 10−6

(Supplementary Tables 16 and 18).

Table 1. PWAS identified 14 candidate genes in brain proteomes associated with AD.

PWAS 1 PWAS 2

Gene CHR z-score P value Gene CHR z-score P value

1 ACE 17 −5.695 1.23 × 10−8 ACE 17 −5.370 8.04 × 10−8

2 EPHX2 8 7.339 2.16 × 10−13 CTSH 15 4.516 6.30 × 10−6

3 ICA1L 2 −4.319 1.57 × 10−5 DOC2A 16 −4.520 6.13 × 10−6

4 MADD 11 −4.395 1.11 × 10−5 EPHX2 8 5.467 4.58 × 10−8

5 PAFAH1B2 11 −4.215 2.50 × 10−5 PVR 19 −10.800 4.13 × 10−27

6 PLEKHA1 10 4.405 1.06 × 10−5 RTFDC1 20 4.252 2.12 × 10−5

7 PVR 19 −10.525 6.66 × 10−26 SNX32 11 −4.730 2.27 × 10−6

8 SNX1 15 −4.210 2.55 × 10−5 STX4 16 4.200 2.67 × 10−5

9 STX4 16 4.581 4.62 × 10−6
— — — —

10 TOM1L2 17 4.342 1.41 × 10−5
— — — —

This Table shows all significant genes identified in the AD PWASs well as their z-scores and corresponding P values.
PWAS 1 describes the results associated with the Schwartzentruber AD GWAS (Bonferroni-corrected P= 0.05/1468= 3.41 × 10−5), whereas PWAS 2 represents
the results in the Jansen AD GWAS (Bonferroni-corrected P= 0.05/1476= 3.39 × 10−5).

Y.-N. Ou et al.

4

Molecular Psychiatry



Summary findings
By PWAS, MR, and Bayesian colocalization analyses, ACE, ICA1L,
TOM1L2, SNX32, EPHX2, CTSH, and RTFDC1 showed evidence of
being causal in AD brain tissue. Furthermore, ACE was supported
by MR of blood proteomics and also showed significance at the
transcriptional level. SNX32 was also associated with AD at the
blood transcriptional level. Summary plots are shown in Fig. 4A–D.

DISCUSSION
In the present study, we proposed a pipeline of analytical
techniques that investigate the functional associations between
multiple protein biomarkers in the brain and blood with AD risk.
Collectively, we identified seven genes (ACE, ICA1L, TOM1L2,
SNX32, EPHX2, CTSH, and RTFDC1) from a comprehensive analyses
including brain PWAS, MR and colocalization, as well as ACE with
its protein abundance in significant association with AD on the
blood-based studies and SNX32 being supported at the blood
transcriptional level. Furthermore, our results suggested impor-
tance of glutamatergic neurons and astrocytes in AD because
most of the genes discovered in our studies mainly expressed on
the surface of these cells.

Identifying therapeutic targets for diseases is a key goal of
human genetics research and is particularly vital for neurodegen-
erative diseases, including AD, for which no disease-modifying
therapies currently exist [2]. Our analysis implicated genes that
have been widely investigated in AD, such as ACE, TOM1L2, EPHX2,
and CTSH, as well as new candidates, including ICA1L, RTFDC1, and
SNX32. TOM1L2 encodes a protein putatively involved in intracel-
lular recruitment of clathrin onto endosomes and has a
proportionately high level of connectivity with known AD genes
in the 17p LD block [26]. EPHX2, cosited at a locus associated with
AD, encodes a key enzyme for epoxyeicosatrienoic acid signaling
named soluble epoxide hydrolase [27]. CTSH, a linked AD gene, is
expressed in the temporal cortices of late-onset Alzheimer patients
and was shown to be altered [28]. ICA1L and RTFDC1 were new
candidate genes, which were also identified as being associated
with AD in a recent published integrative study [25]. ICA1L was
revealed to be related to cerebro- and cardio-vascular diseases in
recent GWASs [29, 30]. The removal of Replication termination
factor 2 is a key determinant for the ability of cells to manage
replication stress and maintain genome integrity [31]. SNX32 is the
member of Sorting nexins (SNXs) family, which have been
implicated in regulating membrane trafficking in the endocytic

Table 2. Candidate genes identified by MR and colocalization using brain pQTL.

AD GWAS 1 AD GWAS 2

Gene Beta SE P value PPH4 Gene Beta SE P value PPH4

1 ACE −0.600 0.148 5.76 × 10−5 96.9% CTSH 0.051 0.011 6.29 × 10−6 100%

2 ICA1L −0.970 0.225 1.57 × 10−5 97.2% EPHX2 0.062 0.011 1.09 × 10−8 100%

3 MAP1S 0.861 0.207 3.17 × 10−5 93.2% RTFDC1 0.130 0.030 1.76 × 10−5 100%

4 SLC20A2 −0.790 0.193 4.17 × 10−5 89.9% SNX32 −0.105 0.022 2.26 × 10−6 99.7%

5 TOM1L2 1.349 0.312 1.53 × 10−5 87.6% — — — — —

6 EPHX2 0.352 0.048 2.72 × 10−13 2.06 × 10−9
— — — — —

This Table shows the beta, SE, and P values for the MR, as well as the result of PPH4 for colocalization analysis.
AD GWAS 1 describes the results analyzed in the Schwartzentruber AD GWAS (Bonferroni-corrected P= 0.05/611= 8.18 × 10−5), whereas GWAS 2 represents
the results in the Jansen AD GWAS (Bonferroni-corrected P= 0.05/609= 8.21 × 10−5).

Fig. 3 MR and Bayesian colocalization analysis identified AD-associated genes. A, B are identified genes in brain tissue in AD GWAS
(A Schwartzentruber GWAS; B Jansen GWAS), whereas C, D denote genes in serum in AD GWAS (C Schwartzentruber GWAS; D Jansen GWAS).
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pathway [32]. SNX32 has been found to be associated with
increased risk of AD, however, it influences other complex traits in
the opposite direction, which may make SNX32 a less attractive
therapeutic target [22]. The findings suggest that an efficient

integration of the pQTL and GWAS signals are helpful for
deciphering disease biology. In general, genetic data derived from
brain tissue that captures biological effects relevant to this disease
are pertinent to characterizing genes associated with AD.

Fig. 4 Summary of the AD significant genes with evidence for being consistent among the four approaches. A, B are heatmap plots
denoting the genetic correlations between candidate genes and AD. The rows denote three methods for identifying candidate genes
associated with AD. The columns are the gene names. The color of the block represents the size of P values of each genetic correlation. Genes
passed both of the Brain-MR and colocalization analyses were depicted in the Brain-MR column. The missing P values (gray background)
represent the analyses that were not performed because of the lack of this part of data. C, D are Venn plots of the AD significant genes with
evidence for being consistent among the four approaches. Collectively, A, C were results in Schwartzentruber GWAS; B, D were in
Jansen GWAS.

Table 3. Candidate genes identified by MR using blood proteomes.

AD GWAS 1 AD GWAS 2

Gene Beta SE P value Gene Beta SE P value

1 ACE −0.077 0.016 1.92 × 10−6 ACE −0.017 0.004 4.14 × 10−6

2 APOE 0.547 0.023 4.00 × 10−123 APOE 0.111 0.005 4.73 × 10−100

3 CD33 0.051 0.011 4.88 × 10−6 CD33 0.013 0.003 2.58 × 10−7

4 CKM −0.338 0.065 1.98 × 10−7
— — — —

5 TMEM106B −0.155 0.036 1.34 × 10−5
— — — —

6 TREM2 −0.579 0.081 1.05 × 10−12
— — — —

This Table shows the beta, SE, and P values for the MR analysis of blood proteomes.
AD GWAS 1 describes the results analyzed in the Schwartzentruber AD GWAS (Bonferroni-corrected P= 0.05/641= 7.80 × 10−5), whereas GWAS 2 represents
the results in the Jansen AD GWAS (Bonferroni-corrected P= 0.05/632= 7.91 × 10−5).
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AD is a multifactorial disease affecting both the brain and the
periphery. A correlation of R2= 0.70 between comparisons of QTL
derived from brain tissue and whole blood associated with the
same gene target was previously reported [33], suggesting that
blood is broadly a valid proxy for brain tissue. Blood-based profiles
might provide an accessible and effective strategy for evaluating
the complicated interplay between brain tissue and the periphery
in the pathogenesis of AD. In the present analysis, only one of the
above seven protein’s abundance (ACE) was verified to be
associated with AD risk in serum. We recognize that there may
be multiple reasons where this is the case: (1) it may be partly due
to potential methodological differences in tissue collection,
material extraction, and analytical platforms; (2) a decoupling of
protein markers in brain and blood due to their different tissue
type and expression profiling; that is, genes that are highly
expressed in brain tissues are not necessarily expressed at the
same level in peripheral blood; and (3) proteomic analysis in blood
has a limited number of proteins and does not fully capture all
protein indicators. Previous candidate gene studies and large
GWASs have associated ACE variants with AD risk. Both ACE
expression in AD brain tissue and cerebrospinal fluid (CSF) levels
of ACE are associated with Aβ load [34] and AD severity [35]. Other
studies have shown that ACE can inhibit Aβ toxicity and
aggregation [36]. A large-sample longitudinal study indicated that
ACE inhibitor use was associated with reduced risk of AD
dementia [37]. Researchers found the therapeutic roles of ACE-
overexpressing macrophages in preserving synapses and cogni-
tion, attenuating neuropathology and neuroinflammation, and
enhancing resistance to pathognomonic amyloid-β forms in AD+

mice [38]. Moreover, angiotensin II, a product of ACE function, was
reported to mediate various neuropathological processes and is
now an intervention target in phase II clinical trials of AD [39].
Future high-quality trails targeted on ACE might be a promising
strategy. In general, our findings along with the extant literature
may help shed light on the causal pathways between these
candidate genes and AD risk.
The majority of known trait-associated variants reside in non-

protein-coding regions of the human genome, with previous
research implicating them with transcriptional regulatory mechan-
isms [40, 41]. As such, our analysis applying eQTL develops our
mechanistic regulatory understanding that underlies associations
from GWAS. However, only two (ACE and SNX32) of the seven
identified proteins provided evidence of gene expression (Sup-
plementary Tables 7–11). There could be several reasons for this
lack of agreement. First, though the exact correlation between
eQTLs and pQTLs has not been fully determined [42], mRNA
expression is known to be poorly correlated with protein levels for
many genes [43], which is in part due to many post-transcriptional
factors, such as sequence features implicated in protein translation
and degradation [44]. Next, technical artifacts in assays and
differences in data analysis approaches might play an important
role. Compared with pQTL, eQTL studies employ more stringent
criteria to identify distant regulatory variants as eQTL is more likely
to be related to local regulatory elements [45]. As such,
transcriptomic and proteomic analyses provide different perspec-
tives of AD risk genes, and a higher proportion of transcriptomic
and proteomic signatures may colocalize as sample sizes of
molecular datasets grow.
In general, leveraging three completely different but mutually

reinforcing methods (PWAS, MR, and Bayesian colocalization), we
identified seven genetically predicted effects across the genome.
Our results suggest that a shared genetic architecture between AD
and a subset of proteins does exist. PWAS can help establish
associations between proteome abundance and phenotypic
variations [7]. MR uses genetic variants as a proxy for exposures
to infer causality among correlated traits [8]. Colocalization
analysis is a Bayesian approach to estimate the probability that
two observed association signals in a given locus are consistent

with a shared causal variant [9, 46]. Together, these three methods
identified candidate proteins implicated in AD pathogenesis and
novel biomarkers for AD that will be useful for developing
therapeutic strategies [17]. One recent integrative analysis
identified 11 proteins in brain tissue being causal in AD, among
which 7 passed PWAS criteria, summary-based MR, and colocaliza-
tion analysis [25]. Our findings are partly consistent, with ICA1L,
SNX32, CTSH, and RTFDC1 identified. However, our present
research employed two large AD GWAS databases [3, 17],
including one published very recently [17]. Moreover, we
integrated data derived from brain tissue and verified the results
in serum. Thus, our present results are more novel and
comprehensive, though further downstream studies are needed
to confirm the exact roles of these genes. Another proteomic
analysis employing MR analysis in multiple tissues (brain, CSF, and
plasma) found that CD33, TREM2, and Membrane Spanning
4-domains A6A (MS4A6A) genes were associated with AD, partly
consistent with our results [47]. All of these findings provide new
evidence for potential therapeutic targets by linking genetic
factors to disease via specific proteins.
The present study has several limitations. First, pQTL and eQTL

mapping are unable to resolve all GWAS signals. The role of genes
involving AD biological progression is difficult to decipher clearly in
a distinct level: here, the protein level. Fully mapping the biological
mechanisms of AD requires further focus on epigenetics, such as
mQTL, single-cell sequencing, and whole-genome sequencing [48].
Second, the lack of comprehensive coverage of all proteomics due
to detection limited to specific proteomes targeted by the
SOMAmers method. Studies using other detection technologies
and biological samples might reveal further associations. Third,
undue focus on single-SNP MR approaches brings a susceptibility to
other pitfalls, including the inability to examine potential hetero-
geneity. Fourth, variations in GWAS samples and statistical power
limited our ability to identify certain associations with smaller effects.
As such, ongoing expansion in the scale and diversity of GWASs can
help with more precise estimates and enable its broader application.
Fifth, the diagnostic criteria of AD in the GWASs vary a lot, thus
introducing heterogeneity of the results. The future use of AD-
related biomarkers (amyloid, tau, and neuroimaging) may be more
helpful in identifying potential target proteins. Last, the present
analysis was restricted to non-Latino Caucasians, and thus findings
should be replicated in cohorts of other ethnicities.
In conclusion, we found strong evidence supporting seven AD-

associated causal relationships of protein biomarkers in the brain,
of which ACE was further verified in blood samples. These findings
illuminate the causal pathways underlying AD on both genetic
and functional levels, which thus prioritize candidate targets for
therapeutic intervention. Future studies leveraging broader large-
scale molecular datasets derived from AD-relevant tissues are
warranted, which may further aid in not only developing
novel insights into the genetic and functional mechanisms
but also providing potential druggable targets enabling new
interventions of AD.
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