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SODB facilitates comprehensive exploration 
of spatial omics data

Zhiyuan Yuan    1,2,7 , Wentao Pan2,3,7, Xuan Zhao2, Fangyuan Zhao4,5, 
Zhimeng Xu2, Xiu Li    3, Yi Zhao    4,5, Michael Q. Zhang    6  & Jianhua Yao2 

Spatial omics technologies generate wealthy but highly complex datasets. 
Here we present Spatial Omics DataBase (SODB), a web-based platform 
providing both rich data resources and a suite of interactive data analytical 
modules. SODB currently maintains >2,400 experiments from >25 spatial 
omics technologies, which are freely accessible as a unified data format 
compatible with various computational packages. SODB also provides 
multiple interactive data analytical modules, especially a unique module, 
Spatial Omics View (SOView). We conduct comprehensive statistical 
analyses and illustrate the utility of both basic and advanced analytical 
modules using multiple spatial omics datasets. We demonstrate SOView 
utility with brain spatial transcriptomics data and recover known anatomical 
structures. We further delineate functional tissue domains with associated 
marker genes that were obscured when analyzed using previous methods. 
We finally show how SODB may efficiently facilitate computational 
method development. The SODB website is https://gene.ai.tencent.com/
SpatialOmics/. The command-line package is available at https://pysodb.
readthedocs.io/en/latest/.

Quantifying molecular profiles within the endogenous spatial context 
can enable the systematic understanding of tissue organization. In 
recent years, people have witnessed great advances in diverse spatial 
technologies, and the molecules that can be spatially resolved include, 
so far, messenger RNAs (mRNAs)1–3, proteins4–6, metabolites7–9 and 
DNAs10. Spatial transcriptomics (technologies for spatially quantifying 
mRNA expressions)11, which is the most developed and widely used 
class of technologies12,13, can be divided into imaging-based14–17 and 
next-generation sequencing (NGS)-based1,2,18,19 categories. Although 
enabling whole-transcriptome profiling, classical NGS-based spa-
tial transcriptomics (for example, spatial transcriptomics (ST)1, 
10X Visium21 and Slide-seq2) inherently suffer from limited spatial 
resolution and low mRNA capture rate20,21. Imaging-based spatial 
transcriptomics (for example, MERFISH14 and seqFISH16) have some 
complementary advantages to the NGS-based methods, such as high 

spatial resolution and capturing rate, but they are limited both in the 
number of targeted genes to profile and in the sizes of the fields of 
view. In this respect, several recent works, such as HDST22, Slide-seqV2 
(ref. 18) and Stereo-seq23, have been introduced as potential alterna-
tives by improving on various limitations. Spatial proteomics (strictly 
speaking, spatially resolved high-plex protein profiling, SRHP)21,24,25, 
another important class of spatial technologies, is mainly fulfilled 
by multiplexed antibody-based imaging. On the basis of different 
antibody-labeling strategies, mainstream SRHP technologies include 
fluorophore-labeled (for example, t-CyCIF26 and 4i27), DNA-labeled 
(for example, CODEX6) and metal-labeled (for example, MIBI-TOF28 
and IMC29) technologies. In addition, spatial metabolomics30, spatial 
genomics10 and spatial multi-omics (simultaneously quantifying two 
or more types of molecules)31–37 are emerging spatial technologies 
that are increasingly gaining more attention. In the literature, all the 
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One can effectively inspect the gene expression values or meta informa-
tion by simply mouse-hovering over the interested cell on the spatial 
map65. STomicsDB also provides analytical results, such as gene distri-
butions and spatial marker genes65. SOAR64 was released shortly after 
STomicsDB, and covers a similar range of data types as STomicsDB. The 
main strength of SOAR is its online spatial analytical modules, such as 
spatially variable gene analysis and cell-type interaction analysis64. 
SOAR’s weaker points, compared with STomicsDB, are that it provides 
gene expression maps and cell-type annotation maps as constant 
images, preventing users from browsing cells/regions of interest.

Like the databases described above, SODB also provides both spa-
tial data deployment and interactive data exploration (Fig. 1). Specifi-
cally, datasets can be efficiently accessed either by browsing according 
to a tree structure (Supplementary Figs. 2 and 3) or by searching accord-
ing to the dataset properties (Supplementary Fig. 4). SODB provides 
interactive data exploration, including easy inspection (for example, 
mouse-hovering and selection on cell or tissue of interest), automatic 
statistics (for example, cell-type composition and expression-value 
distribution within user-selected regions) and basic spatial analysis (for 
example, gene comparison and spatially variable gene analysis). In addi-
tion, SODB presents data using a unified data format for convenient 
interaction with downstream analytical pipelines, for example Scanpy66 
and Squidpy67. With this data format, cell-wise and feature-wise annota-
tion are easily incorporated.

In addition to these features, there are four additional distin-
guishing strengths of SODB. The first is the wide range of spatial data 
types and the large volume of datasets (Supplementary Tables 1–3). 
SODB covers multiple classes of spatial technologies (for example, 
spatial transcriptomics, proteomics, metabolomics, genomics and 
multi-omics) compared with other existing databases, which only 
provide spatial transcriptomics datasets. The volume of included 
datasets is larger than any existing database (see Methods and Fig. 1g). 
The second strength is that SODB provides an interactive visualiza-
tion module named SOView, which can be used to quickly preview the 
global structure of tissue, and also to identify subtle but important 
tissue structures that are obscured in previous analyses. The third 
strength is that SODB provides an interactive display panel, which can 
be combined with SOView to automatically produce molecular mark-
ers for the user-defined regions. The fourth strength is that we have 
provided a command-line package for more efficient data fetching for 
computational groups (Methods).

Data organization and export
In SODB, data are organized using a hierarchical tree containing  
five levels, that is, root, Biotech category, Biotechnology, Dataset and 
Experiment (Supplementary Fig. 2). In this tree, the children of a node 
are subordinate to the node itself. The Biotech category level (Supple-
mentary Fig. 2b) consists of different classes of spatial technologies, 
including spatial transcriptomics, SRHP, spatial metabolomics, spatial 
genomics and spatial multi-omics. Biotechnology (Supplementary  
Fig. 2c) is the next level of the Biotech category, which contains specific 
spatial technologies. For example, the children of ‘spatial transcriptomics’  
of the Biotech category level contains 10X Visium, ST, Slide-seq and 11 
other spatial transcriptomics technologies (Supplementary Fig. 2c). 
Each Biotechnology node has one or more datasets (Dataset level), 
and each dataset is generally attached to a project or publication  
(Supplementary Fig. 2d). One dataset may consist of multiple replicates 
or control slices, and we term each slice as an "experiment", which is 
the leaf node of the tree (Supplementary Fig. 2e).

Each experiment contains the spatially resolved molecular profiles 
of a set of spots. (For the sake of simplicity, we denote the observation 
unit of spatial omics as a ‘spot’, which can be understood as cell/pixel/
bead/other according to the spatial technology used.) In SODB, the 
Experiment is the smallest object available for analysis and down-
loading. As typical spatial omics data are presented, the data of each 

above spatial technologies, which enable multiplexed profiling, are 
termed ‘spatial omics’.

Thanks to these technical advances, a tremendous amount of 
data is generated to fuel global investigations of complex organism 
spatial biology, especially in disease38–41, tumor microenvironment42–52, 
normal tissue homeostasis2,32,41,53–56 and development23,57–62. Due to dif-
ferences in research purposes and the origins in diverse laboratories, 
these data are originally deposited in a variety of repository platforms  
(Supplementary Fig. 1). Some data are maintained in general-purpose 
data repositories, such as Gene Expression Omnibus, Zenodo and 
figshare (Supplementary Fig. 1). Some data are maintained by dedi-
cated scientific institutions, for example, Single Cell Portal and Spatial 
Research (Supplementary Fig. 1). Other data generated by large con-
sortium projects are stored on their webservers, for example, Human 
Tumor Atlas Network (HTAN) for three-dimensional (3D) atlases of 
different human cancers, ImmunoAtlas for immune atlas construction 
and Brain Initiative Cell Census Network (BICCN) for multi-omics atlas 
of brain cell types (Supplementary Fig. 1). Data generated by com-
mercial companies are sometimes listed as sample datasets on their 
own websites, for example, IONpath for MIBI data and 10X Genomics  
for 10X Visium data (Supplementary Fig. 1). Such heterogeneous data 
resources and representations demand great efforts and tedious  
operations for ordinary researchers to process and utilize them.

Several databases have been presented for spatial data deploy-
ment and to provide basic analytical modules online63–65. However, 
they separately suffer from drawbacks such as limitations in user inter-
action, lack of cell-type/tissue region annotations or a lack of newly 
released data types/technologies. Importantly, they are only focused 
on depositing spatial transcriptomics datasets, meaning that other 
classes of spatial omics technologies, such as spatial proteomics, 
metabolomics, genomics and multi-omics data, are ignored.

In this manuscript, we propose SODB, an online platform that 
combines a large-scale data deployment for general spatial omics 
datasets and a suite of interactive analytical modules. We first take an 
overview of SODB’s datasets and functions and compare them with 
other existing platforms. Next, we systematically evaluate SODB’s 
data characteristics and statistics. Then, we introduce SODB’s inter-
active modules using an annotated spatial transcriptomics dataset, 
and demonstrate SODB’s scalability on large-scale datasets using two 
SRHP datasets. Furthermore, we explain SOView, a unique interactive 
visualization module, and its algorithmic and application principles 
on various spatial omics datasets. We additionally demonstrate how 
SOView can be used to delineate known tissue structures and identify 
tissue structures that cannot be seen by other methods. By combin-
ing SOView’s ability to locate regions of interest within tissues and 
the interactive region selection function, we demonstrate how SODB 
is used to identify unexpected tissue regions and companion marker 
genes. Finally, we show how SODB could fuel the development of com-
putational methods.

Results
Overview
Currently, there are three popular databases (namely, SpatialDB63, 
STomicsDB65 and SOAR64) designed for spatial data visualization and 
deposition. In this section, we summarize their features and introduce 
SODB’s unique advantages compared with them.

As a pioneer database for spatial transcriptomics, SpatialDB63 
provides datasets from eight different biotechnologies, and imple-
ments basic functions, such as data searching, downloading, gene 
comparison and spatial expression visualization63. However, it only 
provides raw text data format, which needs to be further transformed 
to be processed with downstream computational software63. The weak-
ness in interactive functions and limited data types also hinder its 
wider usability. In comparison, STomicsDB65 is an improvement with 
regard to the range of spatial data types and user interaction interface65.  

http://www.nature.com/naturemethods
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experiment consist of two matrices (that is, a spatial coordination 
matrix and a molecular expression matrix) with the same number of 
rows standing for spots, and the columns of the two matrices stand for  
the x–y coordinates and molecular features, respectively (Supple-
mentary Fig. 2e).

SODB provides both graphical user interface (GUI) and non-GUI 
ways for exporting data. Using the GUI, SODB provides the ‘download’ 
button in every experiment page, so that users can directly obtain the 
data of interest by clicking the button. For non-GUI users, SODB pro-
vides a command-line package, pysodb, for efficient data downloading 
(Methods: ‘Command-line package’). By benchmarking against con-
ventional data loading practice, we show that pysodb can substantially 
save time and memory usage for biologists and bioinformaticians 
(Methods: ‘Method comparisons on data loading’). When loading 
Slide-seqV2 datasets (Supplementary Table 10), the conventional data 

loading approach costs 19.04 minutes and 21.97 gigabytes on average, 
which is hardly possible with personal computers, while SODB reduced 
the time and peak memory usage to 7.16 seconds and 0.04 gigabytes 
on average (Supplementary Fig. 24). If the same dataset has been pre-
viously loaded in the same machine, the time cost could be further 
reduced to 0.20 seconds.

Data characteristics and statistics
We collected spatial omics data according to the data availability infor-
mation provided by the original publications (Supplementary Table 2).  
These data were generally deposited in various platforms (Supple-
mentary Fig. 1) in raw formats. We manually curated these data based 
on original publications as well as well-established data-processing 
pipelines, which resulted in more than 2,000 experiments (Supplemen-
tary Table 1) of tissue samples from seven different species (Fig. 2a). 
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Fig. 1 | Overview. a–f, The overall design of SODB. The six hexagons summarize 
the six features of SODB. SODB contains various types of spatial omics data 
(a), and these data are processed and presented as a unified Anndata format 
(b). SODB supports interactive exploration (e) and customized data statistics 
modules (f). SODB further provides a unique data exploration module named 
Spatial Omics View (SOView). SOView supports both efficient data visualization 
(d) and interactive data analysis (c) functions. The six hexagon features are 

categorized into three groups: data management (a,b), basic exploration  
(e,f) and advanced exploration (c,d). For each group, more detailed information 
is shown with different colored titles. g, Information of different spatial 
technologies, including the types of profiled molecules, the number of  
molecular features and the spatial resolution. And the comparison of included 
spatial technologies among different platforms: SODB, STomicsDB, SpatialDB 
and SOAR.
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Mouse and human were the two most studied species, and consisted of 
50.9% and 46.1% of all experiments, respectively (Fig. 2b). Mouse data 
occupied the majority of studies before late 2019, while human studies 
increased substantially to an amount comparable to the number of 
mouse studies after 2020 (Fig. 2a).

With regard to tissue types (Fig. 2d), different brain regions were 
among the most studied, including cortex regions, which were often 
used to benchmark new spatial technologies17,18,68, and also the focused 
regions of the recent BICCN products69,70. Other brain regions, such as 
hypothalamic preoptic71, nucleus accumbens72 and olfactory bulb1,22 

were also studied. In addition, whole brain data were available but in 
low spatial resolution19,73. With the development of large field-of-view 
(FOV) and high-resolution technologies (for example, Stereo-seq23), 
a single-cell 3D atlas of the whole brain will hopefully be available in 
the near future. Apart from neuroscience studies, other organs, such 
as liver53,54 and heart57,58, are also preferred targets (Fig. 2d), in which 
liver has well-studied zonation patterns74 and heart development stages 
were investigated in both human58 and chicken57. In cancer research, 
breast cancer1,22,45,50,75 and colorectal carcinoma47,76 are two prominent 
targets (Fig. 2d).
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Fig. 2 | Data characteristics and statistics. a, The scatter plot shows the 
generated date of datasets, each dot is a dataset and is colored by the species 
and sized by the number of spots, the y axis is the number of experiments in 
the dataset and the x axis is the release time of the dataset. The line plot shows 
the cumulative number of experiments across time. The timeline plot shows 
the number of experiments of different categories of spatial technologies over 
time. b–d, Pie charts showing the distribution of experiments by species (b), 
technologies (c) and tissue type (d). e,f, Tree map showing the distribution of 
technologies used in human (e) and mouse (f) studies. g, Scatter plot showing 
the relationships between the number of spots and the number of molecular 
features. Each dot is a dataset and is colored by the categories of spatial 

transcriptomics technologies and sized by the number of experiments. Dashed 
circles of different colors are different clusters. Black solid lines indicate the 
spatial technologies of datasets. The red arrow indicates a representative 
MERFISH dataset. h, Pie charts showing the distribution of experiments by 
different quality controls. i, Box plots showing the percentage of SE features 
grouped by different technologies. Each point in the box plot is the percentage 
of SE features (molecular features with Moran’s I > 0) of one experiment. 
Total N = 2,139 independent experiments. j, Box plots showing the sparsity of 
expression matrix grouped by different technologies. Each point in the box plot 
is the sparsity (the percentage of zeros in expression matrix) of one experiment. 
Total N = 2,139 independent experiments.
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We also investigated the various categories of spatial technologies 
involved in SODB (Fig. 2c). As expected, spatial transcriptomics and 
proteomics are the two major classes, accounting for 62.6% and 35.3% 
in all experiments, respectively (Fig. 2c). Data for spatial genomics and 
multi-omics were limited since the available technologies were rare, 
but we reserved space and interfaces for more such data in the future 
(Fig. 2c). In spatial transcriptomics data, ST, as the earliest spatial 
transcriptomics technology, accounted for the largest proportion 
(26.3%) of all experiments, followed by MERFISH (13.5%), which is the 
most widely used imaging-based spatial transcriptomics (Fig. 2c). In 
SRHP data, MIBI, a successful commercialized technology, explained 
the largest proportion (22.7%) of all experiments, while CODEX took 
the second position (6.8%) (Fig. 2c).

Of note, human and mouse studies substantially differed in the 
spatial technologies used (Fig. 2e,f). In human, more than half of the 
experiments were generated by SRHP technologies (for example, MIBI, 
IMC and CODEX), while a few relatively mature spatial transcriptomics 
technologies (for example, ST and Visium) were also used for human 
study (Fig. 2e). In mouse, on the contrary, almost all experiments were 
produced by spatial transcriptomics technologies (for example, ST, 
MERFISH, Visium and Slide-seq) (Fig. 2f).

Among most spatial technologies there existed a trade-off between 
the number of spots and molecular features (Fig. 2g). In the scatter  
plot (Fig. 2g), all SRHP datasets clustered together at the bottom right 
(Fig. 2g, blue dashed circle), which is expected since SRHP technolo-
gies generally enjoy strength in finer spot resolution while suffering  
from limited (<100) protein multiplexing21. A similar statement could 
be made for spatial metabolomics, but these had limited interpreta-
tion and annotation for their features (that is, mass-to-charge ratio, 
m/z). Specifically, time of flight-secondary ion mass spectroscopy data 
relied on chemical standards or isotope tracing to annotate metabo-
lites9,77, while matrix-assisted laser desorption/ionization (MALDI) 
and desorption electrospray ionization enjoyed some computational 
tools for annotation inference78,79. Spatial transcriptomics exhibited 
a rather diverse distribution in the plot (Fig. 2g). The major propor-
tion of spatial transcriptomics datasets was located at the top left 
(high gene throughput and low number of spots; Fig. 2g, red dashed 
circle), and these datasets were mainly generated by classical spa-
tial transcripto mics technologies, for example, 10X Visium19 and ST1. 
New technologies, such as sciSpace55, Slide-seqV2 (ref. 18), HDST22 and 
Stereo-seq23 were improved with regard to spatial resolutions as well 
as spot throughput (Fig. 2g, green dashed circle). Another cluster of 
spatial transcriptomics datasets (mainly imaging-based technologies; 
Fig. 2g, yellow dashed circles) had a smaller number of targeted genes 
compared with traditional ones, while they contained larger numbers 
of spots (cells), which was competitive with those in green dashed 
circles. One dataset, which was distal from any clusters (Fig. 2g, red 
arrow), was from a very recent MERFISH paper80, which improved the 
number of targeted genes to several thousands.

We then evaluated the data quality of the experiments (Fig. 2h,  
n = 2,139). More than 98% of experiments were published in 
peer-reviewed journals (Fig. 2h), and the remaining experiments 
were either from sample data from commercial websites or from 
well-established databases. There were 62.9% experiments with a con-
trol, and 86.4% experiments with replicates (Fig. 2h). In general, spatial 
transcriptomics had better replicates and worse controls than SRHP 
(Supplementary Fig. 7). We curated the cell-type annotation according 
to the original manuscript, resulting in 41.2% well-annotated experi-
ments (Fig. 2h). We also provided spatially variable (SE)67,81 annotations 
for molecular features in almost all datasets (>99.9%), which could be 
conveniently accessed on the website (Fig. 2h and Supplementary 
Fig. 9b).

We further assessed the percentage of molecular features that 
exhibited spatially variable patterns (Methods) across all spatial 
technologies (Fig. 2i). Not surprisingly, sequencing-based spatial 

transcriptomics technologies had low SE percentages (~0), compared 
with most imaging-based spatial transcriptomics technologies, which 
had high SE percentages (~1). One exception was seqFISH+, which was 
the extension of seqFISH and could cover transcriptome-scale gene 
expressions (~10,000)68. All SRHP technologies had SE percentages 
of ~1 because the targeted proteins tended to be spatially informative 
markers. Other spatial technologies, for example, spatial genomics and 
metabolomics, showed modest SE percentages (Fig. 2i).

We finally quantified the data sparsity (Methods) for each spatial 
technology (Fig. 2j), which showed diverse distributions. As expected, 
all sequencing-based spatial transcriptomics technologies showed high 
data sparsity (~1), especially for high spatial resolution technologies, 
such as HDST22 and Slide-seq2. Imaging-based spatial transcriptomics 
technologies (except seqFISH+) had lower sparsity because the tar-
geted genes were typically densely distributed and the technologies, 
per se, had higher mRNA capturing rates20 (Fig. 2j). Similarly, SRHP 
technologies also tended to have lower sparsity (generally even lower 
than imaging-based spatial transcriptomics technologies), since their 
number of targeted proteins was below 100 (Fig. 2g,j). Spatial metabo-
lomics exhibited larger sparsity compared with proteomics since they 
share similar data representation (meshed pixels), while the former had 
much more molecular features. The only spatial genomics technology, 
that is, slide-DNA-seq10, whose experimental protocol was inherited 
from Slide-seq2, also had data sparsity of ~1 (Fig. 2j).

Data exploration
SODB provides convenient ways to interactively explore data. For each 
experiment, the data consist of the molecular expressions of spots, the 
associated spatial coordinates, as well as some attributes of each spot 
(such as cell-type annotation, tissue-domain annotation, etc.). SODB 
provides four data exploration views, namely Expression view (Fig. 3a),  
Annotation view (Fig. 3f), Comparison view (Supplementary Fig. 10)  
and SOView (Fig. 4). The first three basic views are introduced in  
this section, and SOView will be introduced in the following sections. 
We use Slide-seqV2 (ref. 18) data in the mouse hippocampus region 
to demonstrate the three interactive data exploration views. This 
demonstration can be accessed at https://gene.ai.tencent.com/ 
SpatialOmics/dataset?datasetID=1. The web page contains two panels, 
the top panel is for dataset detail (Supplementary Fig. 8a), which is 
used to display the necessary information from the dataset, and the  
bottom panel is for data exploration (Supplementary Fig. 8b), which 
is used to provide users with interactive data exploration.

Expression view. This view can be used to explore the spatial expres-
sion values of selected genes (or other molecules), one gene at a time. 
The gene to be displayed is selected by the user from the drop-down 
menu in the ‘operation panel’ (Supplementary Fig. 9a). The spatial 
expression of the selected gene is shown on the ‘display panel’ (Sup-
plementary Fig. 9f). The user can freely choose whether to perform a 
logarithm operation on the raw count, through the log switch (Sup-
plementary Fig. 9c). Note that SODB additionally provides a spatially 
varying (SE) gene drop-down menu (Supplementary Fig. 9b), in parallel 
to the gene selection menu (Supplementary Fig. 9a), to help users select 
those genes exhibiting spatially varying patterns (Supplementary  
Fig. 11). Users can also customize the marker and color style (Supple-
mentary Fig. 9d), which will respond instantly on the display panel. The 
display panel of the Expression view also supports interactive opera-
tions, including region zoom-in or zoom-out (Fig. 3a,b) by clicking 
the button designated by the red arrow in Supplementary Fig. 9f, and 
inspecting the expression value of a spot of interest by mouse-hovering 
(Fig. 3c). Additionally, users can also select a region of interest (ROI) 
using a rectangular or polygon selector by clicking the button indicated 
by the green arrow in Supplementary Fig. 9f, then the expression-value 
distribution in the selected region will be displayed synchronously in 
the bottom part of the display panel (Fig. 3d). Another way for the user 
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to select regions (Fig. 3e) is by setting the condition in the operation 
panel (Supplementary Fig. 9e).

Annotation view. The purpose of this view is to explore the spatial distri-
bution of a selected property of a spot. The property could be cell-type 
annotation, tissue-domain annotation or other category of property of 
the spots. Similar to the Expression view, the user can select the anno-
tation to be displayed through the drop-down menu on the operation 
panel (Supplementary Fig. 12a). The marker size can be customized as 
in Supplementary Fig. 12b. The Annotation view also provides functions 
such as zoom-in and zoom-out of selected regions (Fig. 3f,g), hovering 
the mouse to display annotation information (Fig. 3h) and selecting 
ROIs by rectangle or polygon selector to obtain the included cell-type 
ratios (Fig. 3i). Annotation view also provides the option to highlight the 
interested cell type(s) or other annotations (Fig. 3j and Supplementary 
Fig. 12c), which is especially useful when viewing large numbers of cell 
types when only a small number of them are of interest.

Comparison view. This view is for efficiently comparing the rela-
tive expression levels of two selected genes, and showing their differ-
ences in space. The user can select two genes of interest through the 
operation panel (Supplementary Fig. 10a). The spot-wise difference of  
the raw count values of the selected genes is then displayed instantly 
in the display panel (Supplementary Fig. 10c). Other options in the 
operation panel (for example, style and selection) are similar to those 
in Expression view (Supplementary Fig. 10b).

Delineating known tissue structures with SOView
An important feature of SODB is the provision of a unique interac-
tive visualization tool, Spatial Omics View (SOView). With SOView, 

users can easily get an overview of the tissue structure characterized 
by the rich molecular features from a single map (Fig. 4). We first use 
an SRHP experiment to demonstrate how SOView processes the raw 
multiplexed data to generate the colorful SOView map (Fig. 4a). This 
experiment used 4i27 technology to measure the subcellular resolved 
~50 protein measurements of 13 HeLa cells (Supplementary Fig. 14a). 
By comparing with the annotation (Supplementary Fig. 14c) provided 
by the original publication27,67, one can see that the SOView map could 
clearly differentiate the nucleus and cytoplasm with distinct colors 
(Supplementary Fig. 14b,c), and 13 nuclei share similar pink colors 
(Supplementary Fig. 14b). It is worth noting that although these 13 
cells are all HeLa cells, the color of their cytoplasm in the SOView map 
is slightly different; for example, the cytoplasm of some cells is blue 
(Supplementary Fig. 14b, blue arrow) and of some cells is green (Sup-
plementary Fig. 14b, green arrow). We reasoned that there might be 
some proteins that were differentially expressed in these two groups 
of cells. After exploring the data using the Expression view of SODB, 
we found that CTNNB1 protein was at a higher level in cells 141, 143, 120, 
122, 142 and 136 (with green cytoplasm) than in other cells (with blue 
cytoplasm), both visually (Supplementary Fig. 14d) and quantitatively 
(Supplementary Fig. 14e). The elevated expression of CTNNB1 might 
be related to cell crowding according to the original report27.

To test SOView on spatial metabolomics data, and to use a simple 
tissue with just three dominate structural factors to illustrate SOView’s 
advantages for visualization, we use a MALDI dataset for wheat seed 
(Fig. 4b). We use dictionary learning82 to extract three dominant 
classes of metabolic features from ~1,000 ion images and explore the 
metabolic expression using SODB’s Expression view (Supplementary  
Fig. 15), and the merged image of the three representative ion images 
could reflect the basic structure of the data (Fig. 4b, left). As expected, 

Gene expression

x: 14,450.69

y: 36,263.53

x: 3,121.90
y: 3,421.10
Cell name:
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Value: 2.00

Annotation

View Zoom in Mouse hover Region selection and statistics

+
Bulk selection by condition

a b c d e

f g h i j

Fig. 3 | Interactive views of SODB. a,f, There are four views for interactive 
data exploration: Expression view (a), Annotation view (f), Comparison view 
(Supplementary Fig. 10) and SOView (Fig. 4 and Supplementary Fig. 19). a–e, In 
Expression View (a), one can zoom in to see the detailed spatial expression for 
ROI (b), mouse-hover to see the spatial and expression information of spots of 
interest (c), obtain distribution information of gene expression within selected 

ROIs (d) and inspect the spatial distribution of spots selected by condition (e). 
f–j, In Annotation view (f), one can zoom in to see the detailed spatial cell-type 
distribution within the ROI (g), mouse-hover to see the spatial and cell-type 
information of spots of interest (h), obtain distribution information of cell types 
within selected ROIs (i) and view the spatial distribution of selected cell types (j).
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we find that the SOView map (Fig. 4b, right) shows the symmetrical 
structure of the seeds very clearly and is consistent with the merged 
image in Fig. 4b (left). Although a merged map of three single molecular 
maps can obtain similar visualization results as SOView, the advantage 
of SOView is that one does not need any knowledge of the tissue in 
advance, nor is it necessary to manually or computationally select those 
important molecular features to visualize the global view of the tissue 
structure. This strength of SOView is more obvious in more complex 
tissues with >3 dominant factors.

The spatial cell-type map, which is typically obtained by clustering 
followed by cell-type labeling, is a standard practice to display tissue 
structure and study the spatial distribution of cell types. However, there 
are some inconveniences when using this practice for the purposes 
of data visualization, especially with a large number of cell types. To 
demonstrate visualization with SOView in such cases, we take the SRHP 
data of a mouse spleen6 with 28 cell types (Fig. 4c and Supplementary 
Fig. 16c,d) as an example to compare the visualization performance 
between cell-type map and SOView. In the SOView result, the four major 
classic splenic compartments, that is, red pulp, B cell follicle, PALS 
(periarteriolar lymphoid sheath) and marginal zone (Supplementary 
Fig. 16a,b) can be clearly differentiated by distinguishing colors. In par-
ticular, SOView outlines PALS, red pulp and B-follicle in very different  
colors, reflecting their substantial differences in protein content. 
On the contrary, the cell-type map (Fig. 4c, left, and Supplementary 
Fig. 16c,d) is slightly cluttered due to its random coloring, so that the 
color difference cannot represent the difference between cell types, 
which hinders the user in distinguishing the main structure of spatial 
data for visualization purposes. In addition, clustering and cell-type 

labeling additionally require complex clustering parameter tuning and 
time-consuming manual labeling. It can be concluded that when users 
browse spatial omics data, we believe that SOView is more suitable as 
a quick visualization tool, in which the color is more meaningful than 
the color of the cell-type map. But, when the user intends to dive into 
cell-type interaction analysis in detail, clustering and cell-type labeling 
steps are necessary.

For samples with more molecular feature dimensions (for  
example, spatial transcriptomics) and more complex tissue structures, 
global visualization of the tissue landmarks of the whole sample is even 
more important. We next used the spatiotemporal transcriptomics  
data (Stereo-seq technology) for mouse embryonic development23  
(Fig. 4d) at E14.5 and E15.5. By comparing SOView with the spots annota-
tion (Fig. 4d and Supplementary Fig. 17), one can observe that SOView 
can not only differentiate different organs with discriminative colors, 
but also find subcompartments inside individual organs, such as brain, 
heart, liver, lung and pancreas (Supplementary Fig. 17). This strength 
of SOView allows users to quickly understand the global structure of 
a whole sample and reveals some local heterogeneity within specific 
subregions.

Since SOView coloring is based on the similarity of the molecular 
expression profiles of spots, we want to test SOView using tissues with 
known spatial continuity to verify whether SOView could generate 
gradient color patterns. For this, we adopt the dorsolateral prefrontal 
cortex (DLPFC) dataset83 of 10X Visium spatial transcriptomics, which 
covers cortex layers from one to six and white matter (WM). By compar-
ing the SOView results and the region annotation results (Fig. 4e), one 
can observe both the gradient of the colors from Layer1 to Layer6 in 
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Fig. 4 | SOView demonstration of various spatial omics datasets. a, SOView 
inputs spatial omics data and outputs a single colorful image for interactive 
visualization. b, Visualization comparison between a merge of three individual 
ion images (left) and SOView (right) on a spatial metabolomics wheat seed 
dataset. c, Visualization comparison between cell-type mapping (left) and 
SOView (right) on a spatial proteomics mouse spleen dataset. The cell-type 

mapping is generated by SODB, the cell-type color legend is in Supplementary 
Fig. 16d. d, Visualization comparison between cell-type mapping (left) and 
SOView (right) on a spatial transcriptomics mouse embryo dataset. The cell-type 
mapping is generated by SODB, the cell-type color legend is in Supplementary 
Fig. 17. e, Visualization comparison between region annotation (top) and SOView 
(bottom) on a spatial transcriptomics human cortex dataset.
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the three replicates, and the color gap between Layer6 and WM (Fig. 4e, 
bottom). This is also consistent with the recent conclusion published 
with the BICCN project that the cell types and gene expression exhibit 
a gradient distribution along the cortex axis69. From a practical view, if 
one has no previous knowledge of the gradient nature of the cerebral 
cortex, it is difficult to observe the continuity of gene expression in 
this tissue, either by means of region annotation (Fig. 4e, top) or by 
exploring individual gene expression. In contrast, SOView can both 
easily achieve this goal, to reveal the continuity and gradient, and inter-
actively inspect the pattern by mouse-hovering and region selection.

In summary, we conclude that SOView, as a spatial omics visualiza-
tion tool: (1) can support a global overview of the tissue structure and 
reveal heterogeneity within substructures; (2) can reflect the difference 
in the molecular expression profile with the color differences of its 
automatic color assignment, thus revealing the underlying continuity 
of the tissue; (3) can compare well with cell-type maps, where SOView 
is more suitable for visualization purposes, which can avoid cluster-
ing parameter adjustment, laborious cell-type labeling and avoid the 
problem of color crowding in cases with large numbers of cell types. 
In the next section, we demonstrate the advantages of SOView over 
other methods in discovering unexpected tissue structures, and its 
ability to discover region-specific markers by combining with SODB 
interactive features.

Characterizing tissue structures obscured in other analyses
The previous section introduced the strengths of SOView for visualiza-
tion purposes compared with other methods. This section describes 
the even more powerful ability of SOView by combining with SODB 
interactive functions, which is one of the key features of our work. To 
this end, we used a more complex dataset to show that SOView can 
identify some important tissue structures that other methods cannot, 
and to interactively find the companion markers of these structures.

We used a sagittal mouse brain posterior dataset generated by 
10X Visium spatial transcriptomics technology19. One can freely access 
the data by visiting SODB (https://gene.ai.tencent.com/SpatialOmics/
dataset?datasetID=78), selecting ‘V1_Mouse_Brain_Sagittal_Posterior_ 
filtered_feature_bc_matrix’ in the data selector drop-down menu 
(Supplementary Fig. 18), then clicking ‘SOView’ (Supplementary  
Fig. 19a) to explore the global structure of the tissue (Supplementary 
Fig. 19a, black arrow). Current methods for identifying tissue structures 
for spatial transcriptomics data include three categories: (1) clustering 
using gene expression profiles alone, the representative method is 
Louvain66; (2) clustering using both gene expression profiles and spatial 
location, the representative method is BayesSpace84 and (3) clustering 
using gene expression profiles, spatial location and histological image, 
the representative method is SpaGCN85. By referring to the Allen brain 
map86 (Fig. 5a) and the paired histological images (Fig. 5b,c), we next 
compared these methods, that is, Louvain (Fig. 5d), BayesSpace (Fig. 5e),  
SpaGCN (Fig. 5f) and SOView (Fig. 5g), for their ability to identify  
different tissue structures.

First, we focus on the cerebellum region (Fig. 5c, red dashed line, 
and Supplementary Fig. 20a), and we can see that all methods show 
similar results (Fig. 5d–g), clearly distinguishing the molecular layer 
and granular layer of the hemispheric region, and the fiber tracts. For 
the brain stem region (Fig. 5c, orange dashed line, and Supplementary  
Fig. 20b), the Louvain results seemed more scattered (Fig. 5d), since 
the spatial location information was not considered when clustering. 
In contrast, the methods that utilized spatial information, BayesSpace 
(Fig. 5e) and SpaGCN (Fig. 5f) could better recover the spatially coherent  
tissue domain, and SOView (Fig. 5g) visualization was comparable 
with BayesSpace and SpaGCN, even without using either spatial or 
histological information. For the isocortex (Fig. 5c, dark blue dashed 
line, and Supplementary Fig. 20c), BayesSpace (Fig. 5e) distinguished 
the main region from other regions but failed to identify subregions 
(for example, cortex layers). Louvain (Fig. 5d) differentiated cortex 

Layer1 from the other cortex layers but failed to distinguish Layer1 from 
a hippocampal formation (HPF) region. SpaGCN (Fig. 5f) mistakenly 
mixed Layer2–Layer6 of the isocortex with CA1 of the HPF region. In 
contrast, SOView (Fig. 5g) not only differentiated the isocortex from the 
other regions using different colors, but also revealed a gradient trend 
from Layer1 to Layer6, consistent with all the three cortex replicates in  
Fig. 4e, as well as with the previous report69,83.

Structure characterization is even more challenging when consid-
ering the hippocampal formation (HPF) region (Fig. 5c, green dashed 
line, and Supplementary Fig. 20d). For HPF1 (Fig. 5c), Louvain (Fig. 5d) 
could distinguish the ‘(’ shaped Ammon’s horn (CA) region from the ‘)’ 
shaped dentate gyrus (DG) region, but failed to differentiate CA from 
an isocortex region. BayesSpace (Fig. 5e) mixed CA and DG together, 
possibly due to over weighting of the spatial information. Although 
SpaGCN (Fig. 5f) successfully distinguished CA and DG, it mixed CA 
with a part of the isocortex, and also failed to identify subregions of 
CA and DG. In contrast, SOView not only distinguished CA and DG by 
different colors, but also identified the heterogeneity inside CA and 
DG with slight color variations.

For HPF2 (Fig. 5c), Louvain (Fig. 5d) was able to outline the  
‘(‘ shaped pyramidal layer of CA3 (CA3sp; Fig. 5b, red arrow), but mis-
takenly mixed it with olfactory areas (OLF) (Fig. 5c, blue dashed line). 
Neither BayesSpace (Fig. 5e) nor SpaGCN (Fig. 5f) could distinguish 
between OLF and HPF2, or among the CA3sp subregions in HPF2 (Fig. 5b,  
red arrow). In contrast, SOView was the only method that successfully 
delineated CA3sp (Fig. 5b,g, red arrows), which could be verified in both 
the paired histological image (Fig. 5b) and the Allen brain map (Fig. 5a,  
red arrow). We next asked whether this region is characterized by  
corresponding marker genes. Since the other methods could not iden-
tify this region (CA3sp; Fig. 5b, red arrow), naturally the marker genes 
of this region might not be identifiable either. However, by combining 
the interactive function of SODB, SOView enabled the identification of 
such subtle regions and the corresponding marker genes. Users could 
just use either the box selector (Supplementary Fig. 19a, red arrow) or 
the polygon selector (Supplementary Fig. 19a, yellow arrow) to select 
the ROI in the SOView display panel, then click the ‘Analysis’ button 
(Supplementary Fig. 19a, blue arrow). The marker genes of the selected 
ROI will be automatically presented in the web page (Supplementary 
Fig. 19b). We used this method to analyze the marker genes of CA3sp 
in HPF2 (Supplementary Fig. 19b), and found that they were specifi-
cally highly enriched in the CA3sp region (Fig. 5h, top row). We also 
verified the expression of these marker genes in a replicate experiment  
(Fig. 5i, top row).

We also found a small distinctive region in the SOView map  
(Fig. 5g, blue arrow). To dissect this region, we circled it on the  
SOView map (Supplementary Fig. 21a, red circle) and obtained its  
differentially expressed genes (Supplementary Fig. 21b and Fig. 5h,  
bottom row). We found that these marker genes were highly expressed 
not only in the ROI that we circled (Fig. 5h, bottom row, red arrow),  
but also in another small region (Fig. 5h, bottom row, green arrow). The 
marker genes showed consistent patterns in another replicate (Fig. 5i, 
bottom row). By referring to the histological image (Fig. 5b,c), one could  
find that these two small regions did have distinctive morphological 
features from the surrounding regions (Fig. 5b, blue and green arrows), 
and their relative positions on the Allen brain map corresponded 
to the ventricular system (VS) (Fig. 5a,c, purple region and purple 
dashed line). Note that both this region and the marker genes cannot be  
discovered by any other methods (Fig. 5d–f).

Furthermore, we scored different methods according to their 
abilities to characterize different regions of the brain (Methods). The 
results showed that SOView could exclusively identify three brain 
regions that could not be identified by other methods, and was better 
than the other methods in the overall score (Fig. 5j).

To comprehensively compare more methods on a wider  
range of parameter settings, we additionally compared a list of  
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methods for identifying spatial domains (Methods: ‘Method com-
parisons on identifying tissue domains’ and Supplementary Table 7)  
under ten different parameter settings (Supplementary Table 8)  
for each method on two replicate samples. We show all the results  
in Supplementary Figs. 25–42. In these results, we not only showed  
each method output in its whole, but also showed the zoomed  
in regions that were specifically well recognized by SOView (that is,  
VS and HPF2, as shown in Fig. 5c,g). All these results suggest that no 
matter how the parameters were tuned in these methods, they could 
not find the functional tissue domains that were easily identified  
by SOView.

Advancing computational methods development
To show that SODB could facilitate development of computational 
methods (for example, provide datasets for reproducing and bench-
marking existing methods and provide potential new datasets for novel 
methods development), we took the field of spatial transcriptomics as 
an example. For this, we collected mainstream computational methods 
covered in six recent review articles12,20,87–90 (Supplementary Table 4), 
including a total of 68 methods in 11 types (Fig. 6a and Supplementary 
Table 5). We also summarized the datasets used by these methods, and 
matched them with datasets in SODB, to see how SODB might support 
these existing methods (Supplementary Table 6).
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Fig. 5 | SOView discovers both known and unknown functional tissue 
domains. a,b, Allen brain map reference (a) and histological image (b) of a mouse 
brain posterior part. c, Major brain regions are annotated by reference to a and 
Supplementary Fig 20. d–g, Result of different methods in delineating different 
brain structures: Louvain (d), BayesSpace (e), SpaGCN (f) and SOView (g).  
h, Top, top marker genes of CA3sp region, identified in SOView (g) red arrow. 

The top marker genes are obtained by SODB (Supplementary Fig. 19). h, Bottom, 
top marker genes of VS region, identified in SOView (g) blue arrow. The top 
marker genes are obtained by SODB (Supplementary Fig. 21). i, The same genes 
as in h show consistent patterns in another replicate. j, Comparison of different 
methods in the ability to distinguish different brain regions.

http://www.nature.com/naturemethods


Nature Methods | Volume 20 | March 2023 | 387–399 396

Resource https://doi.org/10.1038/s41592-023-01773-7

We find that SODB could fully support most (>90%) of the com-
putational methods of the six review articles (Fig. 6b). By joining  
all covered methods together, SODB could fully support 91% of them 
(Fig. 6d). After grouping these methods by type, we found that SODB 
could fully support seven out of eleven types of methods, including 
alignment, expression prediction, framework, gene imputation, inter-
action, resolution enhancement and SE analysis (Fig. 6c).

We next summarized the frequencies of each dataset used by 
each type of method (Fig. 6e). These datasets were selected because 
they were used at least once by one of the 68 most popular methods,  
and the names of the datasets (colored by spatial biotechnolo-
gies) were its dataset ID in SODB (Methods). In the statistics, the 
Visium sample data provided by the 10X Genomics website was the 
most widely used dataset in four method types (Fig. 6e). Datasets 
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Fig. 6 | SODB advances computational methods development. a, Venn plot 
showing the computational methods mentioned in six high-impact review 
articles. b,c, Bar plot showing how many computational methods (grouped 
by review articles (b) or method types (c)) are fully/partially/not supported by 
SODB. d, Pie plot showing how many methods ( joint from a) are fully/partially/
not supported by SODB. e, Heat map showing the frequencies of each dataset 

used by each method type. The dataset name is colored by spatial technology. 
The first entry of the heat map (SE analysis, 10X Genomics) is 6, this means that 
there are six methods of SE analysis that used 10X Genomics dataset.  
f, Bar plot showing the top frequently used datasets. g, SOView visualization of 
top ten frequently used datasets. In each dataset, one experiment is used for 
visualization.
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published with original ST (Stahl2016visualization)1 and Slide-seq  
(rodriques2019slide)2 papers were mainly used in SE analysis algo-
rithms and used less in other method types (Fig. 6e). The DLPFC dataset 
(Maynard2021trans)83, which contained 12 replicates of human brain 
cortex with well-annotated region labels was a widely used standard 
dataset in spatial clustering methods (Fig. 6e). The gene imputation 
methods mainly used imaging-based spatial transcriptomics datasets, 
such as MERFISH profiling on mouse hypothalamic preoptic region 
(Moffitt2018molecular)71, osmFISH profiling on mouse somatosensory 
cortex (Codeluppi2018spatial)15 and STARmap profiling on mouse 
visual cortex (Wang2018three)17 (Fig. 6e). Novel methods developers 
could easily find the necessary datasets to be used for benchmarking 
according to the method types, and also explore new datasets for 
novel applications.

We also compiled the statistics (Fig. 6f) on the overall usage 
frequencies of SODB datasets (the datasets that were not used by 
any methods were excluded), and found that early datasets and 
well-organized datasets were more likely to be frequently used (see 
the top ten frequently used datasets in Fig. 6g). Some newly generated 
datasets, such as MERFISH profiling on mouse primary motor cortex 
(Zhang2021spatially)69, seqFISH profiling on embryo development 
(Lohoff2021integration)60 and Stereo-seq profiling on embryo devel-
opment (Chen2022spatiotemporal)23, were not widely used, but their 
high data quality (for example, large field-of-view, high mRNA capture 
ratio and high throughput) could make them potentially more popular 
in the future. The generation of these new datasets would also stimulate 
new algorithm developments. For example, more MERFISH datasets in 
diverse brain tissues (for example, Fang2022conservation80 and chen-
2021decoding72) would suggest integrating cell morphological features 
with gene expression profiles to achieve more comprehensive cell iden-
tity learning. More 3D spatial datasets (for example, Wang2021easi91 
and kuett2021three52) would call for new 3D analytical methods. Spatial 
datasets with large FOV (for example, Srivatsan2021embryo55 and 
Chen2022spatiotemporal23) could facilitate high-quality data registra-
tion and cell segmentation method development.

Discussion
We present SODB, a web-based platform combining large-scale data 
deposition and interactive data exploration for general spatial omics 
data. SODB presents various types of spatial omics datasets (for exam-
ple, spatial transcriptomics, proteomics, metabolomics, genomics 
and multi-omics) with a downloadable and unified data format, which 
could be directly fed into many mainstream analytical packages. Apart 
from data, SODB also provides a suite of interactive data exploration 
modules. Among these, SOView is a key feature of SODB, which can be 
used to visualize the global tissue structure, and identify some subtle 
but important local or subtissue structures. Combing SOView and the 
interactive interface of SODB, one can characterize user-defined ROIs 
with automatically generated marker genes. SODB could also fuel the 
future development of various spatial omics computational methods.

We anticipate some potential future improvements, and we wel-
come user feedback. For example, due to the heterogeneous pipelines 
for processing different data formats, users are currently not allowed 
to upload their own datasets to SODB, and data submission should 
be accomplished by contacting the corresponding authors via email. 
Our group will process and update the database biweekly. At present, 
SODB can explore data consisting of up to 106 spots (Supplementary 
Fig. 22), the scalability to larger scale data needs to be further optimized 
in the future.

As one of the most watched technologies in recent years31, the spa-
tial omics community will contribute more novel biotechnologies and 
new datasets in the future. Integrating comprehensive spatial omics 
data with interactive analytical modules, SODB will greatly assist its 
users in gaining more functional insights by providing a multifaceted 
view of tissue-level molecular profiles and biological pathways.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41592-023-01773-7.
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Methods
Data collection and processing
We collected datasets according to the ‘data availability’ statement 
of each original manuscript. The provided data links (Supplemen-
tary Table 2, ‘access’ column) were typically referred to public data 
deployment platforms (Supplementary Fig. 1). For the sake of different 
technologies and different laboratories, the raw format of generated 
data is highly diverse. In general, for meshed data, such as 10X Visium83 
and ST1, the spatial information was obtained using the coordinate of 
each spot; for subcellular resolution data, the spatial information was 
obtained using the center position of each segmentation cell; and for 
imaging data whose raw data is presented by multi-channel images, the 
spatial information was obtained using the relative positions of pixels. 
Due to the heterogeneous data format, which cannot be processed by 
a unified pipeline, we designed different scripts to manually process 
them into Anndata66 format. The obtained spatial information was 
written into Anndata.obsm[‘spatial’], and other properties associated 
with spots (for example, spot annotations, region labels or cell sizes) 
were written into Anndata.obs.

For every dataset we provided a clustering result (Anndata.
obs[‘leiden’]) for users’ convenience. We used the standard pipe-
line provided by Scanpy66. Specifically, we used the total counts to 
normalize the raw count values, followed by log transformation. For  
data with feature dimensions >2,000, we selected the top 2,000 highly 
variable genes using highly_variable_genes(adata, flavor = ‘seurat’, 
n_top_genes = 2000). Then principal component analysis (PCA),  
neighbors and Leiden algorithms were run with default para-
meters. We admit that different applications and data need different  
clustering algorithms with different parameters to be tuned. The clus-
tering results with this unified procedure were aimed at providing a 
reference for users. One can download the Anndata-formatted data 
and process it using the customized pipelines. It is worth noting that 
the downloaded data from SODB remain as the full gene set, rather than 
just highly variable genes, which is ready to interact with downstream 
pipelines.

SOView
The visualization and analysis of high-plex spatial omics data is  
challenging. For a typical spatial transcriptomics data (such as 
10X Visium), there are more than 20,000 genes profiled on several  
thousands of spots. One cannot have a comprehensive understand-
ing of the assayed tissue by visually inspecting each gene’s spatial  
expression. To alleviate this problem, we propose SOView, an  
interactive visualization method for efficient spatial omics data explo-
ration. SOView does not need any parameter-tuning steps, and all the 
datasets were run with consistent settings. This is beneficial for batch 
processing of a large number of datasets. The main idea of SOView is 
to utilize the interactive capabilities of the SODB website to visualize 
and explore the spatially resolved molecular landscape of the target 
tissue by combining manifold learning and visually understandable 
color coding. In the following, we explain the internal happenings 
of SOView at three time points: (1) before data is updated to SODB, 
(2) when the user visualizes data with SOView and (3) when the user 
interacts with SOView.

Before data is updated to SODB. This step happens after the data is 
processed into Anndata format and before input into SODB. Without 
loss of generality, suppose this data consists of one gene expression 
matrix of n spots × m genes (stored in Anndata.X), and one spatial coor-
dinate matrix (SCM) of n spots × 2 (stored in Anndata.obsm[‘spatial’]). 
First, the gene expression matrix is reduced to p = min(50,m − 1) dimen-
sions by PCA to form one n spots × p principal components matrix. 
Next, the connectivity of each pair of spots is estimated by an efficient 
neighborhood search92, to generate a sparse neighborhood graph of 
spots with size n × n. Then, this neighborhood graph is input into a 

uniform manifold approximation and projection (UMAP) algorithm93 
to obtain a dimensionality reduced matrix with n × 3 (stored in Anndata.
obsm[‘X_umap’]).

When the user visualizes data with SOView. For the display panel 
of SOView (Supplementary Fig. 19a, black arrow), we exploited the 
open-source JavaScript visualization library Echarts in the front-end of 
the SODB website. When the user needs to visualize data with a speci-
fied ‘data id’ and properties with SOView, the front-end code first sends 
a request using HTTP-POST function to the back-end Python code, with 
the ‘data id’ and three property names of spots (by default, three UMAP 
components, that is, X_umap@0, X_umap@1 and X_umap@2; Sup-
plementary Fig. 13a) as parameters. After receiving the POST request, 
the back-end Python code accesses the location where the specified 
Anndata data are stored on the back-end server according to this  
‘data id’, followed by reading the Anndata file (stored as h5ad file)  
into memory. The back-end code reads the three-dimensional  
dimensionality reduced matrix via Anndata.obsm[‘X_umap’]  
and rescales it to 0–255 by each column to form an RGB color matrix 
(RCM). Then RCM and SCM (stored in Anndata.obsm[‘spatial’])  
are transmitted to the front end through the HTTP-POST function. 
The front-end JavaScript code passes the two matrices to Echarts,  
and Echarts plots an interactive color map based on the spatial  
position and color of each spot. In this way, the similarities in  
color between spots reflect the similarities in gene expression  
between spots, and users can visualize the tissue heterogeneity through 
a single plot.

Note that the three properties to be encoded in colors could be 
any other spot-level features, such as PCA components, t-SNE com-
ponents and gene expression values. SOView provides an operation 
panel (Supplementary Fig. 13a,b) for users to customize the features 
to be encoded in RGB colors. The default option is the first three com-
ponents of UMAP (that is, X_umap@0, X_umap@1 and X_umap@2; 
Supplementary Fig. 13a). One can freely change these options using 
the drop-down menus (Supplementary Fig. 13a).

When the user interacts with SOView. Some basic user interactions 
include mouse-hovering, zoom-in, zoom-out and region selection on 
SOView plot (Supplementary Fig. 19a, black arrow). Another important 
interaction function is to detect the marker genes of user-selected 
ROIs. This function is warranted because clustering-based methods 
cannot identify some important but subtle tissue domains (examples 
can be found in Fig. 5), and the markers of these domains would be 
missed. The powerful functions of SOView can help users to locate 
these tissue domains, and then the marker gene in this domain will be 
detected. Specifically, to detect the marker genes (or other molecular 
features) of user-selected ROIs, there were three steps: (1) the front-end 
code passed the index list of the user-selected spots to the back-end 
code; (2) the spots in the ROI were compared with other spots in the  
tissue using t-test comparison between the two groups and (3) the 
genes (or other molecular features) were ranked by the score out-
put by scanpy.tl.rank_genes_groups (https://scanpy.readthedocs.
io/en/stable/generated/scanpy.tl.rank_genes_groups.html#scanpy.
tl.rank_genes_groups) and displayed on the display panel of SOView 
(Supplementary Fig. 19b).

SOView is designed to maximally serve the SODB database by lift-
ing the heavy computational burdens from users in the data prepara-
tion stage, so that users do not feel the computational pressure when 
exploring and interacting with data, even for large-scale data up to 
more than 106 spots.

Database comparison
According to the STomicsDB65 website (https://db.cngb.org/stomics/;  
Supplementary Fig. 5a), the number of spots is 754,063 (Homo  
sapiens), 3,222,307 (Mus musculus), 95,749 (Macaca fascicularis), 
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160,258 (Danio rerio) and 155,684 (Drosophila melanogaster), the listed 
biotechnologies with spot-wise spatial coordinates are 10X Visium, ST, 
Stereo-seq, DBiT-seq, HDST, MERFISH, seqScope, DSP and sciSpace 
(Supplementary Fig. 5c).

According to the SODB website, the numbers of biotechnologies 
are 14 (spatial transcriptomics), six (SRHP), three (spatial metabo-
lomics), one (spatial genomics) and two (spatial multi-omics), 
respectively. So the total number of biotechnologies in SODB is 26 
(Supplementary Fig. 5b).

According to SOAR’s manuscript64 (https://doi.org/10.1101/ 
2022.04.17.488596), there are a total of 1,633 samples (experiments). 
The SOAR website (Supplementary Fig. 5d) shows that SOAR covers 
eight different spatial technologies (10X, DBiT-seq, MERFISH, osmFISH, 
seqFISH, seqFISH+, Slide-seq and ST).

Command-line package (pysodb)
Besides the GUI-based data access in the SODB website, SODB provides 
another command-line package (pysodb) to access the data for compu-
tational groups. Specifically, pysodb contains the following functions:

•	 Function 1: Pysodb.list_dataset() 
This function returns a list containing the names of all datasets.

•	 Function 2: Pysodb.list_dataset_by_biotech(biotech_name) 
This function takes ‘biotech_name’ as the input (for example, 
10X Visium, slide-seq, MIBI or CODEX), and outputs a list that 
contains the names of datasets in that biotech.

•	 Function 3: Pysodb.list_biotech(biotech_category) 
This function takes ‘biotech_category‘ as input (for example, 
spatial transcriptomics/spatial proteomics/spatial metabo-
lomics/spatial genomics/spatial multi-omics), and outputs a list 
that contains the names of possible biotechnologies belonging 
to the category. For example, if the input is ‘spatial transcrip-
tomics’, the expected output is 10X Visium, Slide-seq, MERFISH, 
osmFISH, seqFISH, seqFISH+, seqScope, STARmap, EASI-FISH, 
Slide-seqV2, HDST, ST, Stereo-seq and sciSpace.

•	 Function 4: Pysodb.load_dataset(dataset_name) 
This function takes ‘dataset_name’ as the input (such as  
‘wang2021easi’, please refer to Methods: ‘Names of datasets’, and  
‘Short name’ in the dataset detail page, for example, https://gene. 
ai.tencent.com/SpatialOmics/dataset?datasetID=41), and returns  
Python dict object. The keys of the dict are the names of the 
experiments within the dataset, and the corresponding values 
are the Anndata objects.

•	 Function 5: Pysodb.
load_experiment(dataset_name,experiment_name)

This function takes two parameters as input: ‘dataset_name’ and 
‘experiment_name’. Since function 4 might take a long time if input 
a dataset_name that contains a large number of experiments. Func-
tion 5 is designed to eliminate this problem by only downloading and 
loading one experiment of a dataset. This function returns a single 
Anndata object.

Note that if one dataset was previously loaded by pysodb, it would 
be cached locally, so that loading that data is much more time efficient 
than loading it for the first time.

The code of pysodb is publicly available at https://github.com/
TencentAILabHealthcare/pysodb. The document for the package is 
available at https://pysodb.readthedocs.io/en/latest/. The demonstra-
tion code to show how pysodb can interact with downstream pipelines 
is available at https://github.com/yuanzhiyuan/SODB_analysis/tree/
master/Demonstration.

Data sparsity and SE analysis
The data sparsity of each experiment was measured by computing the 
percentage of zeroes entries in the expression matrix94. The spatially 
variable (SE) analysis was performed by Moran’s I67.

Names of datasets
In SODB, the dataset identities were named as ‘ABC’, where A is the last 
name of the first author, B is the published year and C is the first word 
of the paper/project title.

Platform implementation
SODB provides data and analytical tools online through the website. 
The front end is developed based on Vue.js (v.3.2.13) and Element Plus 
(v.2.0.5), where Vue.js is a popular progressive JavaScript framework 
for single page applications and Element Plus is a Vue3-based com-
ponent library. We construct data visualization and analytical tools 
with the open-source JavaScript visualization library Echarts (v.5.3.2). 
The back end is built with Python (v.3.8.13) and Flask (v.2.1.2). Flask is 
a lightweight WSGI web application framework. We utilize SQLite3 
(v.2.6.0) to store metadata. Nginx (v.1.20.1) is used to reverse proxy.

Method comparisons on identifying tissue domains
To benchmark the performance of identifying tissue domains, we 
compared ten computational methods with SOView. The ten methods 
include traditional nonspatial clustering methods (Louvain66), spatial 
clustering methods with (SpaGCN85) or without (BayesSpace84, CCST_
leiden95, CCST_louvain95, conST96, SCAN-IT97, SEDR98, SpaceFlow99 and 
STAGATE100) the integration of hematoxylin and eosin images. All the 
methods information is summarized in Supplementary Table 7. We used 
the replicate samples provided in https://support.10xgenomics.com/
spatial-gene-expression/datasets. These samples can be downloaded 
by the visium_sge function provided in SCANPY, with accession code 
‘V1_Mouse_Brain_Sagittal_Posterior’ and ‘V1_Mouse_Brain_Sagittal_ 
Posterior_Section_2’. These datasets can also be explored and down-
loaded by SODB, via the GUI link https://gene.ai.tencent.com/ 
SpatialOmics/dataset?datasetID=78, or by the command-line pysodb.

We ran all the compared methods according to the tutorials 
provided on their websites (Supplementary Table 7). We tested each 
method on each dataset, with a range of parameters to fully test their 
abilities to identify spatial domains at different cluster granularity. We 
have provided the parameter settings, figures and reproducible codes 
in Supplementary Table 8.

Methods comparison on identifying brain regions
The comparison shown in Fig. 5j proceeds as follows: method A on region 
I, if A cannot exclusively distinguish region I from other regions, then 
the score for method A in region I is 0. If A can exclusively distinguish 
region I from other regions, but A cannot identify at least one subregion 
of region I, then the score for method A in region I is 1. If A can exclusively 
distinguish region I from other regions, and also can identify at least 
one subregion of region I, then the score for method A in region I is 2.

For example, the gray spots in the Louvain result (Fig. 5d) are 
in both HPF1 and isocortex regions (Fig. 5c), which means Louvain 
could not exclusively distinguish HPF1 and isocortex, so the scores 
of Louvain in HPF1 and isocortex are 0. BayesSpace can distinguish 
isocortex region from other regions (Fig. 5c,e), but it cannot identify 
subregions within isocortex, so the score of BayesSpace in isocortex 
is 1. SOView can not only distinguish HPF region from other regions in 
color, but also identify subregions of HPF (for example, CA and DG), 
so the score for SOView in HPF is 2.

SODB can help with the development of spatial clustering 
algorithms
One necessary part of developing a spatial clustering algorithm is to 
quantitatively evaluate the algorithm performance on the data with 
spatial domain ground truth and compare with existing algorithms. 
SODB provides various such data, such as maynard2021trans83, codelup-
pi2018spatial15, Wang2018Three_1k17, to name a few. Many existing algo-
rithms for spatial clustering have already used some datasets (they are 
also provided in SODB); please refer to Supplementary Table 5 for details.
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Method comparisons on data loading
We highlighted the importance of pysodb in improving data access for 
biologists and bioinformaticians. In detail, we recorded the peak mem-
ory and time cost of loading spatial omics datasets. We loaded data in 
three ways: (1) load from raw data provided by the original paper, in which 
data are typically presented as multiple CSV formatted files; (2) load 
using pysodb’s load_experiment function and (3) load using pysodb’s 
load experiment function (preload). The difference between methods (2) 
and (3) is that the former loads the data the first time at the machine, and 
the latter loads data that was previously loaded at the machine (which 
means that the data was cached locally). The datasets we compare are 
Slide-seqV2 (Supplementary Table 10). We use the Python ‘time’ function 
to record the time cost, and the Python “tracemalloc’ function to record 
the peak memory. For code availability, see Supplementary Table 9.

Updating and maintenance
We are a multi-institute research team from Fudan University, Tsinghua 
University and Tencent AI Laboratory, specializing in spatial omics 
research. The server clusters are stably maintained by the Tencent 
Cloud, which is one of the most robust cloud services in China. We 
have also backed up the docker image in different sites (Fudan and 
Tsinghua) for data redundancy, so that the database could be resumed 
when necessary.

The regular data update will be biweekly, the data collection  
people will search a set of keywords (spatial transcriptomics, spatially  
resolved transcriptomics, Visium, Slide-seq, Slide-seqV2, spatial  
proteomics, MIBI and other technology names involved in SODB) 
to find related publications over the preceding two weeks. We also 
subscribe to Google alerts associated with these keywords. Then, the 
data will be downloaded and preprocessed by the customized code for 
specific technologies, followed by updating to the database.

We have updated the data curation code to Github for the SODB 
project. Interested researchers will be able to propose new data/func-
tion suggestions via the Github Issue or email to the corresponding 
author (we have provided the emails for our team on the SODB website).

Statistics
All box plots in the manuscript share the same settings: the lower and 
upper hinges show the first and third quartiles (the 25th and 75th per-
centiles); the center lines correspond to the median; the upper whisker 
extends from the upper hinge to the largest value, which should be less 
than 1.5× the interquartile range (or distance between the first and 
third quartiles); and the lower whisker extends from the lower hinge 
to the smallest value, which is at most 1.5× the interquartile range. Data 
beyond the end of the whiskers are ‘outlying’ points and are plotted 
individually.

Visualization was performed by matplotlib (https://matplotlib.
org/) and seaborn (https://seaborn.pydata.org/), statistical analysis 
was performed by scipy, numpy and scikit-learn82. Omics data analysis 
was performed by SCANPY66 and Squidpy67.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All the primary links of raw data are provided on the web page of data-
sets. All processed data can be downloaded via the SODB website 
(https://gene.ai.tencent.com/SpatialOmics/) or pysodb package 
(https://pysodb.readthedocs.io/en/latest/).

Code availability
The SODB website is available at https://gene.ai.tencent.com/Spa-
tialOmics/. Code for the SODB project is available at https://github.
com/yuanzhiyuan/SODB_analysis/. Code for pysodb is available at 

https://github.com/TencentAILabHealthcare/pysodb. Please refer to 
Supplementary Table 9 for detailed information on code and resources.
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where Vue.js is a popular progressive JavaScript framework for single page applications and Element Plus is a Vue3 based component library. 
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