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Abstract—Despite the impressive results achieved by deep learn-
ing based 3D reconstruction, the techniques of directly learning to
model 4D human captures with detailed geometry have been less
studied. This work presents a novel neural compositional repre-
sentation for Human 4D Modeling with transformER (H4MER).
Specifically, our H4MER is a compact and compositional repre-
sentation for dynamic human by exploiting the human body prior
from the widely used SMPL parametric model. Thus, H4MER can
represent a dynamic 3D human over a temporal span with the codes
of shape, initial pose, motion and auxiliaries. A simple yet effective
linear motion model is proposed to provide a rough and regularized
motion estimation, followed by per-frame compensation for pose
and geometry details with the residual encoded in the auxiliary
codes. We present a novel Transformer-based feature extractor
and conditional GRU decoder to facilitate learning and improve
the representation capability. Extensive experiments demonstrate
our method is not only effective in recovering dynamic human
with accurate motion and detailed geometry, but also amenable to
various 4D human related tasks, including monocular video fitting,
motion retargeting, 4D completion, and future prediction.

Index Terms—4D representation, compositional representation,
human modeling, transformer.

I. INTRODUCTION

THE vanilla SMPL based parametric representations have
been extensively studied and widely utilized for modeling

3D human shapes. These representations have critical impacts
to many human-centric tasks, such as pose estimation [1], [2],
[3] and body shape fitting [4], [5], [6], [7], [8]. Unfortunately,
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Fig. 1. Comparison with existing 4D human representations. Our representa-
tion supports faster inference and more complete reconstructions compared with
free-form methods (Fig. 3). And it provides the long-range temporal context and
additional fine-grained geometry controlled by low-dimensional codes, which
is more compact compared with previous SMPL-based methods.

these vanilla 3D representations are arguably insufficient for
the applications involving dynamic/temporal signals concerned
in this paper such as 3D moving humans (Fig. 1 top), as the
temporal information is not captured.

There are only a few works on the representations of 4D
human modeling. These works are roughly categorized into
free-form [9], [10] and prior-based methods [11], [12], [13]
depending on the 3D representation of the output shape (Fig. 1).
The free-form methods leveraging Neural ODE [14] and deep
implicit function [9], [10] often rely on computationally ex-
pensive architectures to learn the compact latent spaces and
reconstruct 4D sequences. Unfortunately, since the human body
prior is not explicitly modeled, the reconstruction results of
these methods may contain obvious geometry artifacts such as
missing hands, and their modeling errors accumulate rapidly
over time. On the other hand, prior-based methods [11], [12],
[13] are mostly derived from the SMPL parametric model [15].
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